Interested Article - Область определения функции

График функции f(x) = √x, область определения которой — все неотрицательные числа

Область определения множество , на котором задаётся функция . В каждой точке этого множества значение функции должно быть определено.

Определение

Если на множестве задана функция, которая отображает множество в другое множество, то множество называется областью определения или областью задания функции.

Более формально, если задана функция , которая отображает множество в , то есть: , то множество называется областью определения или областью задания функции и обозначается или (от англ. domain — «область»).

Иногда рассматриваются и функции, определённые на подмножестве некоторого множества . В этом случае множество называется областью отправления функции .

Примеры

Наиболее наглядные примеры областей определения доставляют числовые функции . Мера и функционал также доставляют важные в приложениях виды областей определения.

Числовые функции

Числовые функции — это функции, относящиеся к следующим двум классам:

  • вещественнозначные функции вещественного переменного — это функции вида ;
  • а также комплекснозначные функции комплексного переменного вида ,

где и — множества вещественных и комплексных чисел соответственно.

Тождественное отображение

Область определения функции совпадает с областью отправления ( или ).

Гармоническая функция

Область определения функции представляет собой комплексную плоскость без нуля:

,

поскольку формула не задаёт значение функции в нуле каким-нибудь числом.

Дробно-рациональные функции

Область определения функции вида

представляет собой вещественную прямую или комплексную плоскость за исключением конечного числа точек, которые являются решениями уравнения

.

Эти точки называются полюсами функции .

Так, функция определена во всех точках, где знаменатель не обращается в ноль, то есть, где . Таким образом является множеством всех действительных (или комплексных) чисел кроме 2 и −2.

Мера

Если каждая точка области определения функции — это некоторое множество, например, подмножество заданного множества, то говорят, задана функция множества .

Мера — пример такой функции, где в качестве области определения функции (меры) выступает некоторая совокупность подмножеств заданного множества, являющееся, например, кольцом или полукольцом множеств.

Например, определённый интеграл представляет собой функцию ориентированного промежутка .

Функционал

Пусть — семейство отображений из множества в множество . Тогда можно определить отображение вида . Такое отображение называется функционалом .

Если, например, фиксировать некоторую точку , то можно определить функцию , которая принимает в «точке» то же значение, что и сама функция в точке .

См. также

Примечания

  1. В. А. Садовничий . Теория операторов. — М. : Дрофа, 2001. — С. 10. — 381 с. — ISBN 5-71-074297-X .
  2. В. А. Ильин , В. А. Садовничий , Бл. Х. Сендов . Глава 3. Теория пределов // / Под ред. А. Н. Тихонова . — 3-е изд. , перераб. и доп. — М. : Проспект, 2006. — Т. 1. — С. 105—121. — 672 с. — ISBN 5-482-00445-7 . 23 июня 2015 года.
  3. В. А. Зорич . Глава I. Некоторые общематематические понятия и обозначения. § 3. Функция // Математический анализ. Часть I. — четвертое, исправленное. — М. : МЦНМО, 2002. — С. 12—14. — 664 с. — ISBN 5-94057-056-9 .

Литература

  • Функция, математический энциклопедический словарь . — Гл. ред. Ю. В. Прохоров. — М.: «Большая российская энциклопедия», 1995.
  • Клейн Ф. . В кн.: Элементарная математика с точки зрения высшей. Т.1. М.-Л., 1933
  • , Л. Л. Максимова . Часть I. Теория множеств // Задачи по теории множеств, математической логике и теории алгоритмов. — 3-е изд. . — М. : Физматлит, 1995. — С. 13—21. — 256 с. — ISBN 5-02-014844-X .
  • А. Н. Колмогоров , С. В. Фомин . Глава 1.. Элементы теории множеств // Элементы теории функций и функционального анализа. — 3-е изд. . — М. : Наука, 1972. — С. 14—18. — 256 с.
  • . Глава 0. Предварительные сведения // Общая топология. — 2-е изд. . — М. : Наука, 1981. — С. 19—27. — 423 с.
  • В. А. Зорич . Глава I. Некоторые общематематические понятия и обозначения. § 3. Функция // Математический анализ, часть I. — М. : Наука, 1981. — С. 23—36. — 544 с.
  • Г. Е. Шилов . Глава 2. Элементы теории множеств. § 2.8. Общее понятие функции. График // Математический анализ (функции одного переменного). — М. : Наука, 1969. — С. 65—69. — 528 с.
  • А. Н. Колмогоров . // «Квант» : науч.-поп. физ.-мат. журн. — М. : «Наука» , 1970. — № 1 . — С. 27—36 . — ISSN .
Источник —

Same as Область определения функции