Interested Article - Срыв потока

Срыв потока с крыла при увеличении угла атаки

Срыв (отрыв) потока — отделение потока газа или жидкости, обтекающего тело, от его поверхности вследствие отрыва пограничного слоя , вызванного его торможением при неблагоприятном градиенте давления.

Распределение скоростей в пограничном слое в следствии торможения из-за вязкости, вызывающий неблагоприятный градиент давления

Среда вблизи обтекаемого тела в следствии вязкости движется медленнее, чем на удалении от нее. В соответствии с принципом Бернулли давление близлежащих слоёв оказывается больше, чем удалённых. Возникает градиент давления. При достижении градиентом определённого значения, называемого неблагоприятным, происходит отрыв потока от поверхности. В результате образуется область оторвавшегося течения или зона отрыва, где характер течения сменяется с ламинарного на турбулентный . Срыв потока сказывается на аэродинамических характеристиках тела ( подъёмной силе , сопротивлении и т.д.)

В авиации

Как правило срыв потока негативно сказывается на аэродинамических свойствах.

Так при статическом обтекании прямоугольного и трапециевидного крыла малой стреловидности летательного аппарата точка отрыва потока совпадает с задней кромкой крыла , и турбулентные потоки незначительны и быстро угасают. Но при кабрировании угол атаки увеличивается, растет градиент давления, и точка отрыва потока начинает постепенно смещаться вдоль верхней поверхности крыла. При достижении критического значения угла атаки, происходит резкое смещение точки отрыва к передней кромке. Так как турбулентные потоки, возникающие при этом над поверхностью крыла, имеют противотечения, то резко падает подъёмная сила и возникает сваливание , с большой вероятностью переходящее в штопор . В гражданской авиации подобная ситуация считается аварийной и для каждого воздушного судна описаны техники выхода из режима сваливания.

Схема обтекания крыла после достижения критического числа Маха

Другим примером негативного влияния срыва потока является трансзвуковое обтекание крыла. С ростом скорости невозмущенного потока местная скорость течения воздуха начинает превышать скорость звука , однако в пограничном слое у поверхности в силу вязкости скорость остаётся существенно меньше. В таких условиях градиент давлений, достаточный для срыва потока, может возникнуть даже при нулевом угле атаки на плоской пластине, но особенно это проявляется на выпуклом (дозвуковом) профиле крыла . В результате турбулентное течение может «затенять» управляемые поверхности (элероны, рули высоты т.д.), делая летательный аппарат неуправляемым. Скорость потока, на которой начинает проявляться данный эффект называется критическим числом Маха .

Наконец ещё один пример ухудшения аэродинамических характеристик — срыв потока с законцовки крыла (или концевой срыв), увеличивающий индуктивное сопротивление крыла.

Топология течений вблизи дельта-крыла на больших углах атаки

В то же время срыв потока может улучшать характеристики крыла. Так при обтекании крыльев малого удлинения и большой стреловидности (например, дельтовидного крыла) уже на малых углах атаки срыв потока с передней кромки крыла образует вихревые жгуты, которые сохраняются и на больших (свыше 40 градусов) углах. Эти вихри не имеют противотечений, а потому создают дополнительную подъемную силу, позволяя сохранять управляемый полёт на больших углах атаки. При этом в создании вихря участвует в первую очередь корневая часть крыла. Это свойство нашло применение истребительной авиации 4-го поколения. Использование трапециевидного с развитым треугольным или оживальным наплывом , позволило добиться управляемости на закритичных углах атаки, сохранив взлетно-посадочные характеристики, чего крыло малого удлинения обеспечить не может.

В технике

Срыв потока наблюдается не только на поверхностях летательного аппарата. Он возникает при обтекании любых тел в газе и жидкости: оперение , винты , лопатки компрессора турбин и ТРД . В жидкости возникающее в результате срыва потока турбулентное течение вызывает кавитацию , которое ведет к разрушению узлов механизмов.

Борьба со срывом потока

Для борьбы со срывом потока применяют различные методы. Для крыльев подбирается соответствующий профиль, обеспечивающий нужное обтекание в заданном диапазоне скоростей и углов атаки. Для предотвращения срыва с управляющих плоскостей используют слив или сдув пограничного слоя. Для предотвращения попадания турбулизированого слоя в воздухозаборник применяется пластинчатый отcекатель. Для борьбы с концевым срывом — разделение потока гребнями и винглеты .

Галерея

См. также

Литература

  • Лойцянский Л. Г. Ламинарный пограничный слой. — М.: ФМ, 1962.
  • Чжен П. Отрывные течения (в 3 томах). — М., Мир, 1972. — 916 с.
  • Шлихтинг Г. Теория пограничного слоя. — М.: Наука, 1974. — 712 с.

Примечания

  1. Новый политехнический энциклопедический словарь / Гл. ред. А. Ю. Ишлинский. — Большая Российская энциклопедия, 2003. — 671 с. — ISBN 5710773166 .
  2. Шлихтинг Г. Теория пограничного слоя (3-е издание). — М. : Наука, 1974. — С. 40—48. — 712 с.
  3. В.В. Козлов. (рус.) // Соросовский образовательный журнал. — 1998. — № 4 . — С. 86—94 . 16 сентября 2021 года.
  4. Песецкий В. А. // Ученые записки ЦАГИ. — 1987. — № 3 . 15 июля 2022 года.
  5. Andrey A. Sidorenko, Alexey D. Budovskiy, Anatoly A. Maslov, Boris V. Postnikov, Boris Yu. Zanin, Ilya D. Zverkov, Victor V. Kozlov. (англ.) // Experiments in Fluids : журнал. — 2013. — No. 54(8) . — P. 1—12 . 15 июля 2022 года.
Источник —

Same as Срыв потока