Interested Article - Децеллюляризация

Децеллюляризация — процедура очистки аллографтов от клеточного компонента различными способами (физическими, ферментативными и химическими) с целью получения неиммуногенной, эффективной и безопасной конструкции на основе естественного внеклеточного матрикса .

Методы децеллюризации находят своё применение в тканевой инженерии при использовании кадаверных аллотрансплантатов с последующей их децеллюризацией и количественной контрольной оценкой остаточной ДНК в трансплантате. Подобная процедура позволяет избежать попадания антигенов донора в организм реципиента и, как следствие, предотвратить нежелательную реакцию иммунной системы. Децеллюризованные матриксы уже содержат соответствующие белки и факторы роста для первоначальной адгезии, поверхностной пролиферации и клеточной дифференцировки, что облегчает создание клеточной ниши . Биоискусственные или тканеинженерные трансплантаты, созданные на основе естественного децеллюризированного аллогенного или ксеногенного матрикса, заселённого клетками пациента, то есть персонифицированные, будут биосовместимыми, атромбогенными, лишёнными иных недостатков синтетических протезов .

Для удаления клеточной составляющей нативного органа могут быть использованы различные методы воздействия на ткань ― физические, ферментативные и химические. К физическим методам относятся механическое воздействие, циклы замораживания-оттаивания, обработка ультразвуком. При ферментативной децеллюляризации используются трипсин , эндо- и экзонуклеазы. Широко применяются и химические детергенты ― кислоты и щёлочи, ферменты, гипертонические и гипотонические растворы, ионные и неионные детергенты, хелатирующие агенты и бимодальные детергенты . Выбор действующего агента, метода децеллюляризации и продолжительности экспозиции действующих растворов определяется с учётом анатомо-гистологических особенностей, структуры и свойств исследуемого органа .

Неудачный выбор децеллюляризирующего агента может привести к разрушению структуры матрикса и потере его механических и биологических свойств, поскольку любой химический агент повреждает матрикс в той или иной степени, и только правильно подобранные метод и длительность экспозиции способны минимизировать последствия данного воздействия, поэтому проблема поиска оптимальной технологии децеллюляризации тканей с сохранением межклеточного вещества максимально интактным остаётся открытой . Именно сохранность микроархитектоники и компонентов межклеточного вещества придаёт биоинженерным каркасам способность стимулировать клеточную пролиферацию , хемотаксис , ответное ремоделирование тканей пациента, и при этом они не должны содержать продуктов деградации донорских клеток и остатков химических детергентов.

Поскольку процесс децеллюляризации удаляет основные компоненты внеклеточного матрикса , такие как, например, молекулы, которые заставляют клетки размножаться и формировать кровеносные сосуды, что ослабляет адгезию клеток к внеклеточному матриксу и ставит под угрозу рецеллюляризацию, был введен дополнительный этап реабилитации между децеллюляризацией и рецеллюляризацией. На этапе реабилитации, к примеру печени, во внеклеточный матрикс, полученный децеллюляризацией вводят раствор, богатый молекулами, такими как и TGFB1 , белками, продуцируемыми клетками печени, выращенными в лаборатории в культуральной среде . Эти белки необходимы для здоровой печени, поскольку они заставляют клетки печени разрастаться и образовывать кровеносные сосуды. Такая предварительная реабилитация матрикса покрытием белками из под культуральной среды значительно улучшала последующую рецеллюляризацию.

Особенности

Следует отличать децеллюляризацию от : при девитализации элиминируются только живые клетки, сохраняя клеточное содержимое в структуре матрикса .

См. также

Примечания

  1. Барановский Д.С., Демченко А.Г., Оганесян Р.В., Лебедев Г.В., Берсенева Д.А., Балясин М.В., Паршин В.Д., Люндуп А.В. // Вестник Российской академии медицинских наук. — 2017. — Т. 72 , № 4 . — С. 254-260 . — ISSN . — doi : . 13 ноября 2017 года.
  2. В.Н. Александров, Т.А. Камилова, А.В. Кривенцов, Л.И. Калюжная, Д.В. Фирсанов, А.А. Кондратенко, Г.Г. Хубулава. // Вестник Российской военно-медицинской академии. — 2015. — № 1 (49) . — С. 204-209 . — ISSN .
  3. Сотниченко А.С., Губарева Е.А., Куевда Е.В., Гуменюк И.С., Гилевич И.В., Орлов С.В., Сьеквист С.Д., Маккиарини П.Р. // Современные проблемы науки и образования. — 2016. — № 2 . — С. 41 . — ISSN .
  4. (неопр.) . Дата обращения: 25 апреля 2021. 25 апреля 2021 года.
  5. Caires-Júnior, L. C., Goulart, E., Telles-Silva, K. A., Araujo, B. H. S., Musso, C. M., Kobayashi, G., ... & Zatz, M. (2021). . Materials Science and Engineering: C, 121, 111862. doi :
  6. M. V. Balyasin, D. S. Baranovsky, A. G. Demchenko, A. L. Fayzullin, O. A. Krasilnikova. // Vestnik Transplantologii i Iskusstvennykh Organov. — 2020. — Т. 21 , № 4 . — С. 96–107 . — ISSN . — doi : . 24 ноября 2020 года.

Same as Децеллюляризация