Натуральный вывод
- 1 year ago
- 0
- 0
Натуральный логарифм — логарифм по основанию e , где — трансцендентная константа, равная приблизительно 2,72. Он обозначается как , или иногда просто , если основание подразумевается . Обычно число под знаком логарифма вещественное , но это понятие и на комплексные числа .
Из определения следует, что логарифмическая зависимость есть обратная функция для экспоненты , поэтому их графики симметричны относительно биссектрисы первого и третьего квадрантов (см. рисунок справа). Как и экспонента, логарифмическая функция относится к категории трансцендентных функций .
Натуральные логарифмы полезны для решения алгебраических уравнений , в которых неизвестная присутствует в качестве показателя степени, они незаменимы в математическом анализе .
В приложениях натуральный логарифм участвует в математическом описании таких процессов, в которых скорость изменения некоторого количества в каждый момент обратно пропорциональна самому количеству. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада радиоактивного вещества : чем больше атомов распадается, тем меньше их становится и тем медленнее идет дальнейший процесс. Натуральные логарифмы играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения различных задач, (например, нахождение сложных процентов ).
Натуральный логарифм числа — это показатель степени , в которую нужно возвести число e , чтобы получить . Другими словами, натуральный логарифм есть решение уравнения
Примеры:
Натуральный логарифм для вещественного числа определён и однозначен для любого положительного числа
Натуральный логарифм может быть также определён геометрически для любого положительного вещественного числа a как площадь под кривой на промежутке . Простота этого определения, которое согласуется со многими другими формулами, в которых применяется данный логарифм, объясняет происхождение названия «натуральный».
Из определения логарифма следует основное логарифмическое тождество :
Приведём сводку формул в предположении, что все значения положительны :
Формула | Пример | |
---|---|---|
Произведение | ||
Частное | ||
Степень | ||
Корень |
Другие свойства:
Логарифм может быть определён для любого положительного основания, отличного от , а не только для , но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем.
Логарифм по основанию можно преобразовать в натуральный логарифм и обратно:
Связь десятичного ( ) и натурального логарифмов :
Связь двоичного ( ) и натурального логарифмов:
Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию . Она определена при . Область значений: . Эта кривая часто называется логарифмикой . Из формулы видно, что графики логарифмических функций с разными основаниями, бо́льшими единицы, отличаются один от другого только масштабом по оси ; графики для оснований, меньших единицы, являются их зеркальным отражением относительно горизонтальной оси.
Функция является строго возрастающей, она непрерывна и неограниченно дифференцируема всюду в своей области определения.
Ось ординат ( ) является вертикальной асимптотой , поскольку:
Производная натуральной логарифмической функции равна:
Простота этой формулы — одна из причин широкого использования именно натурального логарифма в анализе и при решении дифференциальных уравнений .
Проинтегрировав формулу для производной в интервале от до , мы получаем:
Другими словами, натуральный логарифм равен площади под гиперболой для указанного интервала .
С точки зрения общей алгебры , логарифмическая функция осуществляет (единственно возможный) изоморфизм мультипликативной группы положительных вещественных чисел и аддитивной группы всех вещественных чисел. Другими словами, логарифмическая функция есть единственное (определённое для всех положительных значений аргумента) непрерывное решение функционального уравнения :
Из формулы для производной натурального логарифма следует, что первообразная для гиперболы имеет вид:
где — произвольная константа интегрирования. Поскольку функция состоит из двух ветвей (одна для положительных, другая для отрицательных ), семейство первообразных для тоже состоит из двух подсемейств, причём константы интегрирования у них независимы одна от другой.
Неопределённый интеграл от натурального логарифма легко найти интегрированием по частям :
В математическом анализе и теории дифференциальных уравнений большую роль играет понятие логарифмической производной функции :
Разложим натуральный логарифм в ряд Тейлора вблизи единицы:
(Ряд 1) |
Этот ряд, называемый « рядом Меркатора », сходится при . В частности:
Формула непригодна для практического расчёта логарифмов из-за того, что ряд сходится очень медленно и только в узком интервале. Однако нетрудно получить из неё более удобную формулу:
(Ряд 2) |
Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа , ибо тогда по абсолютной величине меньше единицы. Данный алгоритм уже пригоден для реальных численных расчётов значений логарифмов, однако не является наилучшим с точки зрения трудоёмкости.
Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона , чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.
Альтернативой для очень высокой точности расчёта является формула: :
где обозначает арифметико-геометрическое среднее 1 и 4/s, и
m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.
Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O( M ( n ) ln n ). Здесь n — число цифр точности, для которой натуральный логарифм должен быть оценен, а M ( n ) — вычислительная сложность умножения двух n -значных чисел.
Приведём несколько полезных пределов , связанных с логарифмами :
Из теоремы Линдемана — Вейерштрасса (1885) вытекает следующее следствие: если аргумент есть алгебраическое число , отличное от единицы, то значение есть не только иррациональное , но и трансцендентное число .
Хотя для представления логарифма отсутствуют классические непрерывные дроби , но можно использовать несколько «обобщённых непрерывных дробей», в том числе:
Впервые натуральные логарифмы в современном понимании появились в 1619 году, когда лондонский учитель математики Джон Спайдел переиздал логарифмические таблицы Непера , исправленные и дополненные так, что они фактически стали таблицами натуральных логарифмов . В 1649 году бельгийский математик Грегуар де Сен-Венсан показал, что площадь под гиперболой меняется по логарифмическому закону, и предложил называть этот вид логарифмов «гиперболическим» .
Термин «натуральный логарифм» ввели в употребление Пьетро Менголи (1659 год) и Николас Меркатор в фундаментальном труде «Logarithmotechnia» (1668) . Там же Меркатор описал разложение натурального логарифма в « ряд Меркатора ».
Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли , однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма . Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Д’Аламбером и Эйлером . Бернулли и Д’Аламбер считали, что следует определить , в то время как Лейбниц доказывал, что логарифм отрицательного числа есть мнимое число . Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной .
Комплексный логарифм — аналитическая функция , получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). В отличие от вещественного случая, функция комплексного логарифма многозначна .
Определение . Натуральный логарифм комплексного числа представляет собой решение уравнения
Ненулевое число можно представить в показательной форме:
Тогда находится по формуле :
Здесь — вещественный логарифм. Отсюда вытекает:
Комплексный логарифм существует для любого , и его вещественная часть определяется однозначно, в то время как мнимая часть имеет бесконечное множество значений, различающихся на целое кратное |
Из формулы видно, что у одного и только одного из значений мнимая часть находится в интервале . Это значение называется главным значением комплексного натурального логарифма . Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Если — вещественное число, то главное значение его логарифма совпадает с обычным вещественным логарифмом.
Логарифм отрицательного числа находится по формуле :
Примеры:
Следует быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:
Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви ( ). Причина ошибки — неосторожное использование свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.
Функция натурального логарифма комплексного числа может быть также определена как аналитическое продолжение вещественного логарифма на всю комплексную плоскость , кроме нуля. Пусть кривая начинается в единице, заканчивается в z, не проходит через нуль и не пересекает отрицательную часть вещественной оси. Тогда главное значение логарифма в конечной точке кривой можно определить по формуле :
Распределение простых чисел асимптотически подчиняется простым законам :
Логарифмы нередко возникают при нахождении интегралов и при решении дифференциальных уравнений . Примеры:
В статистике и теории вероятностей логарифм входит в ряд практически важных вероятностных распределений. Например, логарифмическое распределение используется в генетике и физике. Логнормальное распределение часто встречается в ситуациях, когда исследуемая величина есть произведение нескольких независимых положительных случайных переменных .
Для оценки неизвестного параметра широко применяются метод максимального правдоподобия и связанная с ним логарифмическая функция правдоподобия .
Флуктуации при случайном блуждании описывает закон Хинчина-Колмогорова .
Логарифмы помогают выразить размерность Хаусдорфа для фрактала . Например, рассмотрим треугольник Серпинского , который получается из равностороннего треугольника последовательным удалением аналогичных треугольников, линейный размер каждого из которых на каждом этапе уменьшается вдвое (см. рисунок). Размерность результата определяется по формуле:
Принцип Больцмана в статистической термодинамике — одна из важнейших функций состояния термодинамической системы , характеризующая степень её хаотичности .
Формула Циолковского применяется для расчёта скорости ракеты.
Уравнение Нернста связывает окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, а также со стандартными электродными потенциалами окислительно-восстановительных пар.
Логарифм используется в определениях таких величин, как показатель константы автопротолиза (самоионизации молекулы) и водородный показатель (кислотности раствора).
Человеческое восприятие многих явлений хорошо описывается логарифмическим законом.
Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула — громкости звука , яркости света.
Закон Фиттса : чем дальше или точнее выполняется движение организма, тем больше коррекции необходимо для его выполнения и тем дольше эта коррекция исполняется .
Время на принятие решения при наличии выбора можно оценить по .