Предел числовой последовательности
- 1 year ago
- 0
- 0
Ко́мпле́ксные чи́сла (от лат. complexus — связь, сочетание ; о двойном ударении см. примечание ) — числа вида где — вещественные числа , — мнимая единица , то есть число, для которого выполняется равенство: Множество комплексных чисел обычно обозначается символом Вещественные числа можно рассматривать как частный случай комплексных, они имеют вид Главное свойство — в нём выполняется основная теорема алгебры , то есть любой многочлен -й степени ( ) имеет корней . Доказано , что система комплексных чисел логически непротиворечива .
Так же как и для вещественных чисел, для комплексных чисел определены операции сложения , вычитания , умножения и деления . Однако многие свойства комплексных чисел отличаются от свойств вещественных чисел; например, нельзя указать, какое из двух комплексных чисел больше или меньше . Удобно представлять комплексные числа точками на комплексной плоскости ; например, для изображения сопряжённых чисел используется операция отражения относительно горизонтальной оси . Альтернативное представление комплексного числа в тригонометрической записи оказалось полезным для вычисления степеней и корней . Функции комплексного аргумента изучаются в комплексном анализе .
Первоначально идея о необходимости использования комплексных чисел возникла в результате формального решения кубических уравнений , при котором в формуле Кардано под знаком квадратного корня получалось отрицательное число . Большой вклад в исследование комплексных чисел внесли такие математики как Эйлер , который ввёл общепризнанное обозначение для мнимой единицы, Декарт , Гаусс . Сам термин «комплексное число» ввёл в науку Гаусс в 1831 году .
Уникальные свойства комплексных чисел и функций нашли широкое применение для решения многих практических задач в различных областях математики, физики и техники: в обработке сигналов , теории управления , электромагнетизме , теории колебаний , теории упругости и многих других . Преобразования комплексной плоскости оказались полезны в картографии и гидродинамике . Современная физика полагается на описание мира с помощью квантовой механики , которая опирается на систему комплексных чисел.
Известно также несколько обобщений комплексных чисел — например, кватернионы .
Всякое комплексное число
состоит из двух компонентов :Противоположным для комплексного числа является число Например, для числа противоположным будет число
В отличие от вещественных, комплексные числа нельзя сравнивать на больше/меньше ; доказано, что нет способа распространить порядок, заданный для вещественных чисел, на все комплексные так, чтобы порядок был согласован с арифметическими операциями (чтобы из
вытекало , а из и вытекало ). Однако, комплексные числа можно сравнивать на равно/не равно :Четыре арифметические операции для комплексных чисел (определённые ниже) имеют те же свойства, что и аналогичные операции с вещественными числами .
Определение сложения и вычитания комплексных чисел :
Следующая таблица показывает основные свойства сложения для любых комплексных
Свойство | Алгебраическая запись |
---|---|
Коммутативность ( переместительность ) | |
Ассоциативность ( сочетательность ) | |
Свойство нуля | |
Свойство противоположного элемента | |
Выполнение вычитания через сложение |
Определение произведения комплексных чисел
иСледующая таблица показывает основные свойства умножения для любых комплексных
Свойство | Алгебраическая запись |
---|---|
Коммутативность ( переместительность ) | |
Ассоциативность ( сочетательность ) | |
Свойство единицы | |
Свойство нуля | |
Дистрибутивность (распределительность) умножения относительно сложения |
Правила для степеней мнимой единицы:
То есть для любого целого числа остатка от деления на 4.
верна формула , где выражение означает получениеПосле определения операций с комплексными числами выражение
можно воспринимать не как формальную запись, а как выражение, составленное по приведённым выше правилам сложения и умножения. Чтобы это показать, раскроем все входящие в него переменные, следуя и определению сложения и умножения:Комплексное число сопряжённым к комплексному числу (подробнее).
называетсяДля каждого комплексного числа
кроме нуля, можно найти обратное к нему комплексное число Для этого умножим числитель и знаменатель дроби на число комплексно сопряжённое знаменателюОпределим результат деления комплексного числа
на ненулевое числоКак и для вещественных чисел, деление можно заменить умножением делимого на число, обратное к делителю .
Для комплексных чисел определены также извлечение корня , возведение в степень и логарифмирование .
Уже упоминалось, что комплексные числа нельзя сравнивать на больше-меньше (иными словами, на множестве комплексных чисел не задано отношение порядка ). Другое отличие: любой многочлен степени с комплексными (в частности, вещественными) коэффициентами имеет, с учётом кратности , ровно комплексных корней ( основная теорема алгебры ) .
В системе вещественных чисел из отрицательного числа нельзя извлечь корень чётной степени. Для комплексных чисел возможно извлечение корня из любого числа любой степени, однако результат неоднозначен — комплексный корень -й степени из ненулевого числа имеет различных комплексных значений . См., например, корни из единицы .
Дополнительные отличия имеют функции комплексного переменного .
Число
не является единственным числом, квадрат которого равен Число также обладает этим свойством.Выражение знаком радикала стали допускаться только неотрицательные выражения (см. « Арифметический корень »). Во избежание ошибок, выражение с квадратными корнями из отрицательных величин в настоящее время принято записывать как а не несмотря на то, что даже в XIX веке второй вариант записи считался допустимым .
ранее часто использовавшееся вместо в современных учебниках считается некорректным, и подПример возможной ошибки при неосторожном использовании устаревшей записи:
Эта ошибка связана с тем, что квадратный корень из
определён неоднозначно (см. ниже). При использовании современной записи такой ошибки не возникло бы :Комплексные числа можно представить на плоскости с прямоугольной системой координат : числу соответствует точка плоскости с координатами (а также радиус-вектор , соединяющий начало координат с этой точкой). Такая плоскость называется комплексной . Вещественные числа на ней расположены на горизонтальной оси, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями .
Бывает удобно рассматривать на комплексной плоскости также полярную систему координат (см. рисунок справа), в которой координатами точки являются расстояние до начала координат ( модуль ) и угол радиус-вектора точки с горизонтальной осью ( аргумент ).
В этом представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов, а вычитанию чисел соответствует вычитание радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются (последнее несложно вывести из формулы Эйлера или из тригонометрических формул суммы ). Если модуль второго сомножителя равен 1, то умножение на него соответствует повороту радиус-вектора первого числа на угол, равный аргументу второго числа . Этот факт объясняет широкое использование комплексного представления в теории колебаний , где вместо терминов «модуль» и «аргумент» используются термины « амплитуда » и « фаза » .
Пример : умножение на
поворачивает радиус-вектор числа на прямой угол в положительном направлении, а после умножения на радиус-вектор поворачивается на прямой угол в отрицательном направлении.Модулем ( абсолютной величиной ) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же самое, расстояние от точки комплексной плоскости до начала координат). Модуль комплексного числа обозначается (иногда или ) и определяется выражением
Если вещественным числом , то совпадает с абсолютной величиной этого числа в вещественном понимании термина.
являетсяДля любых комплексных
имеют место следующие свойства модуля :Аргументом ненулевого комплексного числа называется угол радиус-вектором соответствующей точки и положительной вещественной полуосью. Аргумент числа измеряется в радианах и обозначается . Из этого определения следует, что
междуДля комплексного нуля значение аргумента не определено, для ненулевого числа
аргумент определяется с точностью до , где — любое целое число. Главным значением аргумента называется такое значение , что Главное значение может обозначаться .Некоторые свойства аргумента :
Если комплексное число зеркальным отражением относительно вещественной оси. Модуль сопряжённого числа такой же, как исходного, а их аргументы различаются знаком :
равно то число называется сопряжённым (или комплексно-сопряжённым) к (обозначается также ). На комплексной плоскости сопряжённые числа получаются друг из другаПереход к сопряжённому числу можно рассматривать как одноместную операцию , которая сохраняет все арифметические и алгебраические свойства. Эта операция имеет следующие свойства :
Произведение комплексно-сопряжённых чисел — неотрицательное вещественное число, равное нулю только для нулевого z :
Сумма комплексно-сопряжённых чисел — вещественное число :
Другие соотношения :
Или, в общем виде: многочлен с вещественными коэффициентами. В частности, если комплексное число является корнем многочлена с вещественными коэффициентами, то сопряжённое число тоже является его корнем. Из этого следует, что существенно комплексные корни такого многочлена (то есть корни, не являющиеся вещественными) разбиваются на комплексно-сопряжённые пары .
где — произвольныйТот факт, что произведение
есть вещественное число, можно использовать, чтобы выразить комплексную дробь в канонической форме, то есть избавиться от мнимости в знаменателе. Для этого надо умножить числитель и знаменатель на сопряжённое к знаменателю выражение , например:Выше использовалась запись комплексного числа полярной системе координат .
в виде такая запись называется алгебраической формой комплексного числа. Две другие основные формы записи связаны с представлением комплексного числа вЕсли вещественную
и мнимую части комплексного числа выразить через модуль и аргумент (то есть , ), то всякое комплексное число , кроме нуля, можно записать в тригонометрической форме :Как уже сказано выше, для нуля аргумент
не определён; для ненулевого числа определяется с точностью до целого кратногоФундаментальное значение в комплексном анализе имеет формула Эйлера :
где число Эйлера , , — косинус и синус , — комплексная экспонента , продолжающая вещественную на случай общего комплексного показателя степени.
—Применяя эту формулу к тригонометрической форме, получим показательную форму комплексного числа :
Следствия
Пример . Представим в тригонометрической и показательной форме число
Отсюда:
Эта формула помогает возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид :
где Эйлером в 1722 году. Приведённая формула справедлива при любом целом , не обязательно положительном.
— модуль, а — аргумент комплексного числа. В современной символике она опубликованаАналогичная формула применима также и при вычислении корней
-й степени из ненулевого комплексного числа :где k принимает все целые значения от
до . Это значит, что корни -й степени из ненулевого комплексного числа существуют для любого натурального и их количество равно . На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного -угольника , вписанного в окружность радиуса с центром в начале координат (см. рисунок).Если в формуле Муавра в качестве аргумента
выбрано его главное значение, то значение корня при называется главным значением корня . Например, главное значение числа равноДля извлечения квадратного корня из комплексного числа можно преобразовать это число в тригонометрическую форму и воспользоваться формулой Муавра для Но существует и чисто алгебраическое представление для двух значений корня. При корнями из числа является пара чисел: где :
Здесь функция «знак» , а радикалы обозначают обычный арифметический корень из неотрицательного вещественного числа. Формула легко проверяется возведением в квадрат. Число является главным значением квадратного корня.
—Пример : для квадратного корня из
формулы дают два значения:Впервые, по-видимому, мнимые величины были упомянуты в труде Кардано «Великое искусство, или об алгебраических правилах» (1545), в рамках формального решения задачи по вычислению двух чисел, сумма которых равна 10, а произведение равно 40. Он получил для этой задачи квадратное уравнение, корни которого: и В комментарии к решению он написал: «эти сложнейшие величины бесполезны, хотя и весьма хитроумны», и «арифметические соображения становятся всё более неуловимыми, достигая предела столь же утончённого, сколь и бесполезного» .
Возможность использования мнимых величин при решении кубического уравнения впервые описал Бомбелли (1572), он же дал правила сложения, вычитания, умножения и деления комплексных чисел. Уравнение имеет вещественный корень однако по формулам Кардано получаем: Бомбелли обнаружил, что так что сумма этих величин даёт нужный вещественный корень. Он отметил, что в подобных ( неприводимых ) случаях комплексные корни уравнения всегда сопряжены, поэтому в сумме и получается вещественное значение. Разъяснения Бомбелли положили начало успешному применению в математике комплексных чисел .
Выражения, представимые в виде Декарта , который называл их так, отвергая их реальность. Для многих других крупных учёных XVII века природа и право на существование мнимых величин тоже представлялись весьма сомнительными. Лейбниц , например, в 1702 году писал: «Дух божий нашёл тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы». Несмотря на эти сомнения, математики уверенно применяли к «мнимым» числам привычные для вещественных величин алгебраические правила и получали корректные результаты .
появляющиеся при решении квадратных и кубических уравнений, где стали называть «мнимыми» в XVI—XVII веках с подачиДолгое время было неясно, все ли операции над комплексными числами приводят к комплексным результатам или же, например, извлечение корня может привести к открытию ещё какого-то нового типа чисел. Задача о выражении корней степени Муавра (1707) и Котса (1722) .
из данного числа была решена в работахСимвол Эйлер (1777, опубл. 1794), взявший для этого первую букву латинского слова imaginarius — «мнимый». Он же распространил все стандартные функции, включая логарифм , на комплексную область. Эйлер также высказал в 1751 году мысль, что в системе комплексных чисел любой многочлен имеет корень ( основная теорема алгебры , до Эйлера сходные предположения высказывали Альбер Жирар и Рене Декарт ) . К такому же выводу пришёл д’Аламбер (1747), но первое строгое доказательство этого факта принадлежит Гауссу (1799) . Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 году (ранее термин использовал в том же смысле французский математик Лазар Карно в 1803 году, но тогда он не получил распространения) .
для обозначения мнимой единицы предложилГеометрическое представление комплексных чисел, немало способствовавшее их легализации, предложили в конце XVIII — начале XIX веков сначала Вессель и Арган (их работы не привлекли внимания), а затем Гаусс . Арифметическая (стандартная) модель комплексных чисел как пар вещественных чисел была построена Гамильтоном («Теория алгебраических пар», 1837); это доказало непротиворечивость их свойств. Термины «модуль», «аргумент» и «сопряжённое число» ввёл в начале XIX века Коши , значительно продвинувший комплексный анализ . С XIX века началось бурное и чрезвычайно плодотворное развитие исследований функций комплексного переменного .
С учётом этого успешного подхода начались поиски способа представления векторов в трёхмерном пространстве , аналогичное комплексной плоскости. В результате пятнадцатилетних поисков Гамильтон предложил в 1843 году обобщение комплексных чисел — кватернионы , которые он был вынужден сделать не трёхмерными, а четырёхмерными (трёхмерные векторы изображала мнимая часть кватернионов); также Гамильтону пришлось отказаться от коммутативности операции умножения .
В 1893 году Чарлз Штейнмец предложил использовать комплексные числа для расчётов электрических цепей переменного тока (см.).
Комплексная функция одной переменной — это функция , которая определена на некоторой области комплексной плоскости и ставит в соответствие точкам этой области комплексные значения . Примеры:
Каждая комплексная функция
может рассматриваться как пара вещественных функций от двух переменных: определяющих её вещественную и мнимую часть соответственно. Функции , называются компонентами комплексной функции Аналогично определяется функция нескольких комплексных переменных .Наглядное представление комплексной функции графиком затруднительно, так как даже для функции одной комплексной переменной график требует четырёх измерений (два на область определения и ещё два для области значений). Если вместо значения функции рассматривать её модуль то полученный рельеф функции размещается в трёх измерениях и даёт некоторое представление о поведении функции .
Все стандартные функции анализа — многочлен , дробно-линейная функция , степенная функция , экспонента , тригонометрические функции , обратные тригонометрические функции , логарифм — могут быть распространены на комплексную плоскость. При этом для них будут иметь место те же алгебраические, дифференциальные и другие тождества, что и для вещественного оригинала , например:
Для комплексных функций определяются понятия предела , непрерывности и производной так же, как в вещественном анализе, с заменой абсолютной величины на комплексный модуль .
Дифференцируемые комплексные функции (то есть функции, имеющие производную) обладают рядом особенностей по сравнению с вещественными .
Определённый интеграл для функций одной комплексной переменной, вообще говоря, зависит от пути интегрирования (то есть выбора кривой от начальной до конечной точки в комплексной плоскости). Однако если интегрируемая функция аналитична в односвязной области , то её интеграл внутри этой области не зависит от пути .
Всякая комплексная функция может рассматриваться как преобразование комплексной плоскости (или как преобразование одной комплексной плоскости в другую). Примеры:
Поскольку любое движение на плоскости есть комбинация перечисленных трёх преобразований, функции и дают общее выражение для движения на комплексной плоскости .
Другие линейные преобразования :
Важную роль в комплексном анализе играют дробно-линейные преобразования :
При этом
(иначе функция вырождается в константу). Характеристическое свойство дробно-линейного преобразования: оно переводит окружности и прямые в окружности и прямые (то есть в так называемые обобщённые окружности , в число которых входят «окружности бесконечного радиуса» — прямые). При этом образом окружности может оказаться прямая, и наоборот .Среди других практически полезных функций преобразования: инверсия функция Жуковского . Инверсия, как и дробно-линейное преобразование, переводит обобщённые окружности в обобщённые окружности.
Исследование плоских фигур нередко облегчается, если перенести их на комплексную плоскость. Многие теоремы планиметрии допускают наглядную и компактную запись с помощью комплексных чисел, например :
Параметрическое уравнение прямой на комплексной плоскости имеет вид :
Угол между двумя прямыми перпендикулярны , только когда — чисто мнимое число. Две прямые параллельны тогда и только тогда, когда есть вещественное число; если при этом также вещественно, то обе прямые совпадают. Каждая прямая рассекает комплексную плоскость на две полуплоскости: на одной из них выражение положительно, на другой — отрицательно .
и равен В частности, прямыеУравнение окружности с центром и радиусом имеет чрезвычайно простой вид: Неравенство описывает внутренность окружности ( открытый круг) . Часто удобна параметрическая форма уравнения окружности :
Множество комплексных чисел поле , которое является конечным расширением степени 2 поля вещественных чисел Основное алгебраическое свойство — оно алгебраически замкнуто , то есть в нём любой многочлен имеет (комплексные) корни и, следовательно, распадается на линейные множители. Говорят также, что есть алгебраическое замыкание поля
образуетХарактеристика комплексного поля равна нулю, мощность как множества та же, что и у поля вещественных чисел, то есть континуум . Теорема Фробениуса установила, что существуют только два тела , являющиеся конечными расширениями — поле комплексных чисел и тело кватернионов .
Превратить поле комплексных чисел в упорядоченное поле невозможно, потому что в упорядоченном поле квадрат любого элемента неотрицателен, и мнимая единица в нём не может существовать.
Из свойств модуля следует, что комплексные числа образуют структуру двумерного нормированного пространства над полем
Поле автоморфизмов , но только один из них (не считая тождественного) оставляет вещественные числа на месте .
допускает бесконечно многоПоля связные локально компактные топологические поля .
и — единственныеТе особенности комплексных чисел и функций, которые отличают их от вещественных, оказались полезными, а часто и незаменимыми в математике, в естественных науках и технике.
Приложения комплексных чисел сами по себе занимают видное место в математике — в частности, понятия алгебраических чисел , нахождение корней многочленов , теория Галуа , комплексный анализ и т. д.
Перенеся геометрическую задачу с обычной плоскости на комплексную, мы нередко получаем возможность значительно упростить её решение .
Многие сложные задачи теории чисел (например, теория биквадратичных вычетов ) и вещественного математического анализа (например, вычисление сложных или несобственных интегралов ) удалось решить только с помощью средств комплексного анализа . Мощным инструментом для открытий в теории чисел оказались, например, гауссовы числа вида где — целые числа . Для исследования распределения простых чисел понадобилась комплексная дзета-функция Римана .
Нередко проблемы вещественного анализа проясняются при их комплексном обобщении. Классический пример — разложение в ряд Тейлора
Этот ряд сходится только в интервале особенными для приведённой функции. Положение проясняется при переходе к функции комплексного переменного у которой обнаруживаются две особые точки: полюса Соответственно, эту функцию можно разложить в ряд только в круге единичного радиуса .
, хотя точки не являются какими-тоПри решении линейных дифференциальных уравнений важно сначала найти все комплексные корни характеристического многочлена, а затем попытаться решить систему в терминах базовых экспонент . В разностных уравнениях используются для аналогичной цели комплексные корни характеристического уравнения системы разностных уравнений . С помощью теории вычетов , являющейся частью комплексного анализа, вычисляются многие сложные интегралы по замкнутым контурам ..
Исследование функции часто связано с анализом её частотного спектра с помощью комплексного преобразования Фурье или Лапласа .
О представлении комплексных чисел в информатике и компьютерной поддержке комплексной арифметики изложено в статье Комплексный тип данных .
Как уже отмечалось выше, всякая комплексная функция может рассматриваться как преобразование одной комплексной плоскости в другую. Гладкая ( аналитическая ) функция обладает двумя особенностями: если в заданной точке производная не равна нулю, то коэффициент растяжения/сжатия при этом преобразовании одинаков по всем направлениям, угол поворота также постоянен ( конформное отображение ) . С этим фактом связано широкое применение комплексных функций в картографии и гидродинамике .
Основой квантовой механики является понятие комплексной волновой функции . Для описания динамики квантовой системы используются дифференциальные уравнения с комплексными коэффициентами типа уравнения Шрёдингера . Решения этих уравнений заданы в комплексном гильбертовом пространстве . Операторы, соответствующие наблюдаемым величинам, эрмитовы . Коммутатор операторов координаты и импульса представляет собой мнимое число:
Здесь постоянная Планка , то есть ( постоянная Дирака ) .
— редуцированнаяВажную роль в квантовой механике играют матрицы Паули и матрицы Дирака , некоторые из них содержат комплексные значения . Ю. Вигнер уточнял, что «…использование комплексных чисел в квантовой механике не является вычислительным трюком прикладной математики; они входят в самую суть формулировки основных законов квантовой механики» .
Поскольку переменный ток есть колебательный процесс, его удобно описывать и исследовать с применением комплексных чисел. Вводятся также понятия импеданса, или комплексного сопротивления , для реактивных элементов электрической цепи, таких как ёмкость и индуктивность, — это помогает рассчитать токи в цепи . Ввиду того, что традиционно символ в электротехнике обозначает величину тока, мнимую единицу там обозначают буквой . Во многих областях электротехники (в основном радиочастотной и оптической) используется не запись уравнений тока и напряжения для цепи, а напрямую уравнения Максвелла в их спектральном представлении, физические величины которых заданы в комплексной плоскости, и при переходе из ( t , x ) - в ( ω , k ) -пространство (где t — время, x — координата, ω — угловая частота , k — волновой вектор ) посредством преобразования Фурье получаются более простые уравнения без производных .
Расширение поля вещественных чисел до комплексных, как и любое другое расширение алгебраической структуры, ставит множество вопросов, основные из которых — это вопросы о том, как определить операции над новым типом чисел, какие свойства будут иметь новые операции и (главный вопрос) допустимо ли такое расширение, не приведёт ли оно к неустранимым противоречиям.
Для анализа подобных вопросов в теории комплексных чисел надо сформировать набор аксиом.
Можно определить аксиоматику множества комплексных чисел аксиоматическую теорию вещественных чисел . А именно, определим как минимальное поле , содержащее множество вещественных чисел и по меньшей мере одно число, вторая степень которого равна −1, — мнимую единицу . Говоря более строго, аксиомы комплексных чисел следующие .
, если опираться наИз этих аксиом вытекают как следствия все прочие свойства. Первые 11 аксиом означают, что расширением Приведённая аксиоматика категорична , то есть любые её модели изоморфны .
образует поле, а 12-я аксиома устанавливает, что это поле являетсяСуществуют и другие варианты аксиоматики комплексных чисел. Например, вместо того, чтобы опираться на уже построенное упорядоченное поле вещественных чисел, можно в качестве базы использовать аксиоматику теории множеств .
Стандартный способ доказать непротиворечивость новой структуры — смоделировать ( интерпретировать ) её аксиомы с помощью объектов другой структуры, чья непротиворечивость сомнений не вызывает. В нашем случае мы должны реализовать эти аксиомы на базе вещественных чисел .
Рассмотрим всевозможные упорядоченные пары вещественных чисел. В данной модели каждая такая пара будет соответствовать комплексному числу
Далее определим :
Пояснение: сложное, на первый взгляд, определение умножения легко выводится из соотношения
Несложно убедиться, что описанная структура пар образует поле и удовлетворяет всему приведённому перечню аксиом комплексных чисел. Вещественные числа моделируются парами , образующими подполе , причём операции с такими парами согласованы с обычными сложением и умножением вещественных чисел. Пары и соответствуют нулю и единице поля. Такой способ является частным случаем процедуры Кэли — Диксона .
Мнимая единица — это пара Квадрат её равен то есть Любое комплексное число можно записать в виде
Описанная модель доказывает, что приведённая аксиоматика комплексных чисел непротиворечива. Потому что если бы в ней было противоречие, то это означало бы противоречие и в базовой для данной модели арифметике вещественных чисел, которую мы заранее предположили непротиворечивой .
Комплексные числа можно также определить как подкольцо кольца вещественных матриц 2×2 вида
с обычным матричным сложением и умножением . Вещественной единице будет соответствовать
мнимой единице —
Множество таких матриц является двумерным векторным пространством . Умножение на комплексное число является линейным оператором . В базисе линейный оператор умножения на представляется указанной выше матрицей, так как :
Матричная модель позволяет легко продемонстрировать связь между комплексными числами и линейными преобразованиями плоскости определённого типа. А именно, существует взаимно однозначное соответствие между комплексными числами и поворотными гомотетиями плоскости ( комбинациями растяжения относительно точки и поворота ): каждая поворотная гомотетия может быть представлена на комплексной плоскости как умножение на комплексное число .
Рассмотрим кольцо многочленов с вещественными коэффициентами и построим его факторкольцо по модулю многочлена (или, что то же, по идеалу , порождённому указанным многочленом). Это значит, что два многочлена из мы будем считать эквивалентными , если при делении на многочлен они дают одинаковые остатки. Например, многочлен будет эквивалентен константе многочлен будет эквивалентен и т. д.
Множество классов эквивалентности образует кольцо с единицей. Так как многочлен неприводим , то это факторкольцо является полем. Роль мнимой единицы играет многочлен поскольку квадрат его (см. выше) эквивалентен Каждый класс эквивалентности содержит остаток вида (от деления на ), который в силу сказанного можно записать как Следовательно, это поле изоморфно полю комплексных чисел .
Данный изоморфизм был обнаружен Коши в 1847 году. Этот подход может быть использован для построения обобщений комплексных чисел, таких как алгебры Клиффорда .
Нетривиальная факторизация поля в поле невозможна, но поля, расширенные бесконечностью, могут нетривиально факторизоваться. Более того, возможны нетривиальные факторизации обычных полей в расширенные. В частности, обычное или расширенное поле рациональных дробей полиномов одной переменной с вещественными коэффициентами факторизуется в расширенное поле комплексных чисел ( сферу Римана ) путём отождествления полинома с нулём. Каждая дробь при этом заменяется на частное остатков от деления числителя и знаменателя своего несократимого представления на . В силу несократимости, при этом не может образоваться неопределённость , в остальных случаях знаменатель, равный нулю, означает бесконечность, случай знаменателя, не равного нулю, рассматриваются в стандартной технике (домножением на сопряжённый знаменателю). Другим способом получения того же результата является параметризация полиномов числителя и знаменателя несократимого представления дроби мнимой единицей.
Параметризуя рациональные дроби полиномов различными числами, можно получать различные факторизации: при параметризации вещественным числом — расширенное поле вещественных, комплексным (не вещественным) — комплексных чисел. Число, используемое для параметризации, есть корень простого (над вещественным полем) полинома, отождествляемого с нулём, т. е. по модулю которого берутся числители и знаменатели (в случае вещественного числа — первой степени, комплексного — квадратный с отрицательным дискриминантом и, соответственно, двумя сопряжёнными комплексными корнями).
Как уже упоминалось , поле комплексных чисел алгебраически замкнуто и имеет характеристику ноль (из последнего свойства вытекает, что оно содержит подполе рациональных чисел ). Кроме того, любой базис трансцендентности над имеет мощность континуум . Этих трёх свойств достаточно, чтобы задать поле комплексных чисел с точностью до изоморфизма полей — между любыми двумя алгебраически замкнутыми полями характеристики 0 с континуальным базисом трансцендентности существует некоторое отождествление, согласованное с операциями сложения и умножения этих полей .
При этом отождествлении другие структуры, вроде нормы или топологии , могут не сохраняться. Например, алгебраическое замыкание поля p {\displaystyle p} -адических чисел также удовлетворяет трём указанным свойствам. Однако -адическая норма не является и, следовательно, не эквивалентна обычной норме комплексных чисел при любом выборе изоморфизма . Поэтому они задают различную структуру топологического векторного пространства : множество из любого элемента векторного пространства и его целозначных кратностей дискретно в комплексном случае и компактно — в -адическом .
Ближайшее обобщение комплексных чисел было обнаружено в 1843 году. Им оказалось тело кватернионов , которое, в отличие от поля комплексных чисел, содержит три мнимые единицы, традиционно обозначаемые Согласно теореме Фробениуса , комплексные числа являются одним из трёх возможных случаев конечномерной алгебры с делением над полем вещественных чисел. В 1919 году выяснилось, что и комплексные числа из вещественных, и кватернионы из комплексных чисел могут быть получены единой процедурой удвоения размерности , также известной как « процедура Кэли — Диксона » .
Дальнейшим применением этой процедуры образуются числа, описанные Артуром Кэли в 1845 году, до обнаружения этой процедуры, и названные « числами Кэли » (октонионы, октавы). Числа, получаемые следующим применением процедуры, названы седенионами . Несмотря на то, что эту процедуру можно повторять и далее, дальнейшие числа названий пока не имеют .
Другие типы расширений комплексных чисел ( гиперкомплексные числа ):