Interested Article - Пространство Калаби — Яу
- 2021-07-25
- 1
Пространство Кала́би — Яу ( многообразие Калаби — Яу ) — компактное комплексное многообразие с кэлеровой метрикой , для которой тензор Риччи обращается в ноль. В теории суперструн иногда предполагают, что дополнительные измерения пространства-времени принимают форму 6-мерного многообразия Калаби — Яу, что привело к идее зеркальной симметрии . Название было придумано в 1985 году , в честь Эудженио Калаби , который впервые предположил , что такие размерности могут существовать, и Яу Шинтуна , который в 1978 году доказал .
Комплексное -мерное пространство Калаби — Яу является -мерным римановым многообразием с риччи-плоской метрикой и дополнительной симплектической структурой.
Ориентируемость и голоморфная ориентируемость
Гладкие многообразия делятся на ориентируемые и неориентируемые. Исторически первым примером неориентируемого многообразия была лента Мёбиуса (и в каком-то смысле это самый важный пример: двумерное гладкое многообразие неориентируемо тогда и только тогда, когда оно содержит ленту Мёбиуса). В терминах дифференциальных форм условие ориентируемости формулируется следующим образом: многообразие ориентируемо тогда и только тогда, когда оно допускает нигде не обращающуюся в нуль дифференциальную форму старшей степени ( форму объёма ). В геометрии неориентируемые многообразия являются скорее курьёзом, поскольку всякое неориентируемое многообразие допускает двойное накрытие , тотальное пространство которого ориентируемо (так называемое ориентирующее накрытие). Его удобно построить при помощи теории векторных расслоений . Именно, надо рассмотреть старшую внешнюю степень кокасательного расслоения — проще говоря, повесив над каждой точкой вещественную прямую, параметризующую всевозможные формы объёма на касательном пространстве в этой точке, выбрать в каждом слое скалярное произведение (например, воспользовавшись разбиением единицы ), а затем рассмотрев в нём вектора единичной длины (то есть по два вектора над каждой точкой). Касательное пространство в точке , где p — точка нашего многообразия, а — ненулевой элемент объёма, изоморфно проецируется на , и, заводя в нём элемент объёма, равный , мы получаем нигде не обнуляющуюся форму старшей степени на тотальном пространстве этого накрытия. Подобная конструкция, когда каждая точка заменяется на пространство, параметризующее всевозможные структуры определённой природы в этой точке (в данном случае на пару точек), а потом на получившемся расслоённом пространстве вводится какая-либо структура, в более сложных случаях называется твисторной конструкцией .
Всё вышеизложенное относится только к вещественным гладким многообразиям (то есть состоящим из карт, функции перехода между которыми бесконечно дифференцируемы). В комплексной геометрии можно дать следующее
Определение. Пусть — комплексное многообразие комплексной размерности . Голоморфное расслоение , слой которого в точке есть комплексная внешняя степень , называется каноническим расслоением . Если многообразие допускает нигде не вырожденное голоморфное сечение канонического расслоения, оно называется многообразием Калаби — Яу , а это сечение — голоморфной формой объёма .
К примеру, когда — комплексная кривая, или же риманова поверхность , каноническое расслоение это просто голоморфное кокасательное расслоение. Его сечения -- это голоморфные 1-формы, или же абелевы дифференциалы . Единственная риманова поверхность, допускающая абелев дифференциал без нулей, это тор, то есть эллиптическая кривая .
Вместе с тем, в терминологии имеется некоторая путаница (которая будет объяснена ниже): иногда от многообразий Калаби — Яу требуют зануления (или хотя бы конечности) фундаментальной группы. Некоторые авторы идут ещё дальше, и относят определение «Калаби — Яу» только к тем многообразиям, у которых все равны нулю при (адепты более слабой конвенции называют такие многообразия «строгими Калаби — Яу»). Почти все авторы требуют условия кэлеровости , априори никак не связанное с наличием голоморфной формы объёма. Наконец, у математиков, если не оговорено обратное, многообразия Калаби — Яу подразумеваются компактными, но в приложениях также важны некомпактные многообразия Калаби — Яу: в таких случаях принято включать в определение условие на асимптотическое поведение голоморфной формы объёма на бесконечности. Имеются и другие вариации определения, связанные с дифференциально-геометрическими свойствами многообразий Калаби — Яу. В связи со всем этим многообразия, удовлетворяющие вышеприведённому определению, иногда жаргонно называются «голоморфно ориентируемыми» . Впредь будем подразумевать под понятием «Калаби — Яу» компактное кэлерово голоморфно ориентируемое многообразие.
Из общего комплексного многообразия, не являющегося голоморфно ориентируемым, получить многообразие Калаби — Яу никакой простой конструкцией типа ориентирующего накрытия нельзя. В самом деле, характеристический класс комплексного расслоения есть первый класс Черна . Для наличия голоморфной формы объёма (то есть тривиализации ) необходимо зануление этого класса. Для сравнения, характеристические классы вещественных линейных расслоений, классы Штифеля — Уитни , принимают значение в , группе когомологий с коэффициентами в кольце вычетов по модулю два, и, что неудивительно, обнуляются после подходящего двулистного накрытия.
Риччи-плоская метрика
На кэлеровых многообразиях кривизна Риччи имеет примечательное свойство: если — оператор комплексной структуры, то 2-форма, заданная как , замкнута и лежит в классе когомологий , классе Черна канонического расслоения. Это может быть проверено например явным координатным вычислением кривизны канонического расслоения на кэлеровом многообразии и доказано при помощи теории Черна — Вейля . Форма называется формой Риччи .
Гипотеза Калаби (1954, 1957) была им практически решена — ему не поддался лишь чрезвычайно тонкий аналитический момент, не имевший непосредственного отношения к геометрии. После того, как это аналитическое утверждение было доказано Яу (1977, 1978), она по справедливости называется теоремой Калаби — Яу (или решением Яу гипотезы Калаби ).
Теорема. Пусть — компактное кэлерово многообразие, его кэлерова форма, и — какая-то форма, представляющая первый класс Черна. Тогда на существует кэлерова метрика такая, что её кэлерова форма принадлежит тому же классу когомологий, что и (то есть форма точна), и форма Риччи метрики равняется .
Для многообразия Калаби — Яу с можно применить теорему к форме , и получить нетривиальное
Следствие. На многообразии Калаби — Яу всякий кэлеров класс допускает риччи-плоскую метрику.
Вместе с тем, зануление кривизны Риччи у кэлерова многообразия ещё не влечёт тривиальности канонического расслоения (и соответственно наличия голоморфной формы объёма): конечно, класс формы Риччи в когомологиях де Рама будет нулевой, но это не исключает того, что целочисленный класс Черна является ненулевым классом в подгруппе кручения в . Иногда такие многообразия также включают в определение многообразий Калаби — Яу.
Связность Леви-Чивиты риччи-плоской кэлеровой метрики сохраняет не только эрмитову структуру в касательных пространствах (то есть её голономия лежит не только в группе U (n) {\displaystyle \mathrm {U} (n)} ), как это происходит на любом кэлеровом многообразии, но и голоморфную форму объёма (то есть голономия лежит в группе S U (n) {\displaystyle \mathrm {SU} (n)} ). Это одна из групп в , и это составляет дифференциально-геометрическое определение многообразий Калаби — Яу. Дифференциальные геометры обыкновенно отказывают в названии «Калаби — Яу» многообразиям, группа голономии связности Леви-Чивиты на которых строго содержится в (как например в случае плоских метрик на торе), а не равняется в точности этой группе.
Примеры и классификация
В одномерном случае любое пространство Калаби — Яу представляет собой тор , который рассматривается как эллиптическая кривая . Вообще комплексный тор любой размерности является многообразием Калаби — Яу. Риччи-плоская метрика в этом случае есть просто плоская метрика, и это единственный известный случай, когда она может быть написана удобоваримой формулой.
Все двумерные пространства Калаби — Яу представляют собой торы и так называемые . Классификация в бо́льших размерностях не завершена, в том числе в важном трёхмерном случае. Примером -мерного многообразия Калаби — Яу может служить гладкая гиперповерхность степени в (или вообще гладкий антиканонический дивизор — то есть нулевой уровень сечения расслоения, двойственного к каноническому — на любом многообразии, где антиканоническое расслоение допускает сечения).
Теорема Богомолова о разложении
Важным структурным результатом теории многообразий Калаби — Яу является теорема Богомолова (иногда Бовиля — Богомолова) о разложении .
Теорема. Всякое компактное кэлерово многообразие , обладающее голоморфной формой объёма (и, соответственно, риччи-плоской метрикой), допускает конечное накрытие , разлагающееся в ортогональное произведение , где:
- — комплексный тор с плоской метрикой,
- — строгие многообразия Калаби — Яу, то есть такие, что при и ,
- — неприводимо , то есть такие, что и .
Здесь — . Голоморфно симплектические многообразия также известны в дифференциальной геометрии как (номенклатура в данном случае, как и в случае многообразий Калаби — Яу, несколько запутана).
Более ранняя теорема Калаби, доказанная в предположении гипотезы его имени, утверждала похожий факт, но без различения строгих Калаби-Яу и неприводимых голоморфно симплектических многообразий. Теорема доказана (без замечания в скобках, на тот момент ещё не установленного) в 1974 году Богомоловым в статье О разложении кэлеровых многообразий с тривиальным каноническим классом . В 1978 году Богомолов использовал этот результат при доказательстве того, что класс голоморфно симплектических многообразий исчерпывается K3-поверхностями . Это доказательство оказалось ошибочным: в 1983 году Бовиль привёл примеры голоморфно симплектических многообразий ( точек на K3-поверхности или схема Гильберта точки на абелевой поверхности, суммирующихся нулём, так называемое). Тогда же он дал другое, дифференциально-геометрическое доказательство теоремы Богомолова, основанное на решении Яу гипотезы Калаби.
Использование в теории струн
В теории струн используются трёхмерные (имеющие вещественную размерность 6) многообразия Калаби — Яу, выступающие как слой компактификации пространства-времени , так что каждой точке четырёхмерного пространства-времени соответствует пространство Калаби — Яу.
Известно более чем 470 миллионов трёхмерных пространств Калаби — Яу , которые удовлетворяют требованиям к дополнительным измерениям, вытекающим из теории струн.
Одной из основных проблем теории струн (учитывая современное состояние разработки) является такая выборка из указанного удовлетворительного подмножества трёхмерных пространств Калаби — Яу, которая давала бы наиболее адекватное обоснование количества и состава семейств всех известных частиц. Феномен свободы выбора пространств Калаби — Яу и возникновение в этой связи в теории струн огромного количества ложных вакуумов известен как проблема ландшафта теории струн . При этом, если теоретические разработки в этой области приведут к выделению единственного пространства Калаби — Яу, удовлетворяющего всем требованиям для дополнительных измерений, это станет очень весомым аргументом в пользу истинности теории струн .
Примечания
- Candelas, Philip; Horowitz, Gary; Strominger, Andrew & Witten, Edward (1985), , Nuclear Physics B Т. 258: 46–74 , DOI 10.1016/0550-3213(85)90602-9
- Calabi, Eugenio (1954), The space of Kähler metrics, Proc. Internat. Congress Math. Amsterdam , с. 206–207
- Calabi, Eugenio (1957), On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology. A symposium in honor of S. Lefschetz , Princeton University Press , с. 78—89, MR :
- Yau, Shing Tung (1978), , Communications on Pure and Applied Mathematics Т. 31 (3): 339—411, MR : , ISSN , DOI 10.1002/cpa.3160310304
- E. Calabi. On Kähler manifolds with vanishing canonical class , Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 78–89. Princeton University Press, Princeton, N. J., 1957.
- Ф. А. Богомолов. от 27 июля 2013 на Wayback Machine Матем. сб. , 1974, том 93(135), номер 4, страницы 573—575
- A. Beauville. от 21 декабря 2019 на Wayback Machine , J. Differential Geom., Volume 18, Number 4 (1983), 755—782.
- Шинтан Яу , Стив Надис. Теория струн и скрытые измерения Вселенной. — СПб. : Издательский дом «Питер», 2016. — 400 с. — ISBN 978-5-496-00247-9 .
- Б. Грин Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории . Пер. с англ., Общ. ред. В. О. Малышенко, — М. : ЕдиториалУРСС, 2004. — 288 с. — ISBN 5-354-00161-7 .
Литература
- Tian, Gang & Yau, Shing-Tung (1990), , Amer. Math. Soc. Т. 3 (3): 579–609 , DOI 10.2307/1990928
- Tian, Gang & Yau, Shing-Tung (1991), , Invent. Math. Т. 106 (1): 27–60 , DOI 10.1007/BF01243902
- 2021-07-25
- 1