Основная теорема арифметики
- 1 year ago
- 0
- 0
Основная теорема теории Галуа — теорема о расширениях полей определённого вида, ключевой результат теории Галуа .
Формулировка: для конечного расширения Галуа существует взаимно-однозначное соответствие между множеством промежуточных полей вида и множеством подгрупп группы Галуа данного расширения (более того, теорема явным образом задаёт это соответствие).
Для данного конечного расширения соответствие устроено следующим образом:
Например, поле соответствует тривиальной подгруппе , а — всей группе (так как все автоморфизмы из группы Галуа сохраняют меньшее поле, а для любого другого элемента существует автоморфизм, действующий на нём нетривиально).
Данное соответствие обладает несколькими полезными свойствами. В частности, оно обращает порядок по включению: для подгрупп группы Галуа условие равносильно . Кроме того, поле является нормальным расширением (или, эквивалентно, расширением Галуа , так как каждое подрасширение сепарабельного расширения сепарабельно) тогда и только тогда, когда — нормальная подгруппа группы Галуа. Факторгруппа по ней изоморфна группе Галуа расширения .
Рассмотрим поле . Каждый его элемент можно записать в виде
где , , , — рациональные числа. Рассмотрим автоморфизмы расширения . Поскольку это расширение порождается и , любой автоморфизм однозначно определяется их образами. Автоморфизмы любого расширения могут только переставлять местами корни многочлена над меньшим полем, следовательно, в данном случае все возможные нетривиальные автоморфизмы — это перестановка и (обозначим этот автоморфизм ), перестановка и (автоморфизм ) и их композиция . Более точно, эти преобразования задаются следующим образом:
Очевидно, что эти отображения действуют биективно и переводят сумму в сумму, следовательно, для проверки равенства достаточно проверить его на парах базисных элементов, что также тривиально. Таким образом, группа Галуа данного расширения — четверная группа Клейна :
Она имеет три нетривильные подгруппы:
Основная теорема сводит вопрос существования промежуточных полей к вопросу о существовании подгрупп некоторой конечной группы (так как порядок группы Галуа равен размерности расширения), многие задачи теории Галуа решаются простым применением основной теоремы.
Например, вопрос о разрешимости уравнения в радикалах обычно формулируют так: можно ли выразить корни данного многочлена через его коэффициенты, используя только арифметические операции и операцию взятия корня -й степени. На языке теории полей этот вопрос можно сформулировать так: рассмотрим поле , порождённое коэффициентами многочлена, и поле , полученное присоединением его корней. Спрашивается, существует ли такая цепочка промежуточных полей
что , где — корень уравнения , причём поле содержит все корни уравнения . В этом случае можно доказать, что соответствующий ряд подгрупп группы Галуа обладает тем свойством, что факторгруппа существует и является циклической . Группы, для которых существует хотя бы один ряд с таким свойством, называются разрешимыми , таким образом, уравнение разрешимо в радикалах тогда и только тогда, когда его группа Галуа разрешима.
Такие теории, как теория Куммера и теория полей классов , основываются на основной теореме теории Галуа.