Interested Article - PCI Express

PCI Express ( англ. Peripheral Component Interconnect Express), или PCIe , или PCI-e ; также известная как 3GIO (3rd Generation I/O) — компьютерная шина (хотя на физическом уровне шиной не является, будучи соединением типа «точка-точка»), использующая программную модель шины PCI и высокопроизводительный физический протокол , основанный на последовательной передаче данных .

Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand . Официально первая базовая спецификация PCI Express появилась в июле 2002 года . Развитием стандарта PCI Express занимается организация PCI Special Interest Group .

Описание

В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда .

Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором.

Кроме того, шиной PCI Express поддерживается :

Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X . Де-факто PCI Express заменила эти шины в персональных компьютерах.

Протокол

Видеокарта для PCI Express x16

Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка , называемое линией ( англ. lane — полоса, ряд); это резко отличается от PCI , в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

Соединение ( англ. link — связь, соединение) между двумя устройствами PCI Express состоит из одной (×1) или нескольких (×2, ×4, ×8, ×16 и ×32) двунаправленных последовательных линий . Каждое устройство должно поддерживать соединение, по крайней мере, с одной линией (×1).

На электрическом уровне каждое соединение использует низковольтную дифференциальную передачу сигнала ( LVDS ), приём и передача информации производится каждым устройством PCI Express по отдельным двум проводникам, таким образом, в простейшем случае устройство подключается к коммутатору PCI Express четырьмя проводниками.

Использование подобного подхода имеет следующие преимущества:

  • карта PCI Express помещается и корректно работает в любом слоте той же или большей пропускной способности (например, карта ×1 будет работать в слотах ×4 и ×16);
  • слот большего физического размера может использовать не все линии (например, к слоту ×16 можно подвести проводники передачи информации, соответствующие ×1 или ×8, и всё это будет нормально функционировать; однако при этом необходимо подключить все проводники питания и заземления, необходимые для слота ×16).

В обоих случаях на шине PCI Express будет использоваться максимальное количество линий, доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express. Например, карта ×4 физически не поместится в стандартный слот ×1, несмотря на то, что она могла бы работать в слоте ×1 с использованием только одной линии. На некоторых материнских платах можно встретить нестандартные слоты ×1 и ×4, у которых отсутствует крайняя перегородка, таким образом, в них можно устанавливать карты большей длины, чем разъём. При этом не обеспечивается питание и заземление выступающей части карты, что может привести к различным проблемам.

PCI Express пересылает всю управляющую информацию, включая прерывания , через те же линии, что используются для передачи данных. Последовательный протокол никогда не может быть заблокирован, таким образом задержки шины PCI Express вполне сравнимы с таковыми для шины PCI (заметим, что шина PCI для передачи сигнала о запросе на прерывание использует отдельные физические линии IRQ#A , IRQ#B , IRQ#C , IRQ#D ).

Во всех высокоскоростных последовательных протоколах (например, гигабитный Ethernet ) информация о синхронизации должна быть встроена в передаваемый сигнал. На физическом уровне PCI Express использует метод канального кодирования (8 бит в десяти, избыточность — 20 %) для устранения постоянной составляющей в передаваемом сигнале и для встраивания информации о синхронизации в поток данных. Начиная с версии PCI Express 3.0 используется более экономное кодирование с избыточностью 1,5 %.

Некоторые протоколы (например, SONET / SDH ) используют метод, который называется скремблинг ( англ. scrambling) для встраивания информации о синхронизации в поток данных и для «размывания» спектра передаваемого сигнала. Спецификация PCI Express также предусматривает функцию скремблинга, но скремблинг PCI Express отличается от такового для SONET .

Спецификации стандарта

PCI-Express 2.0

Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года . Основные нововведения в PCI Express 2.0:

  • Увеличенная пропускная способность: ПСП одной линии — 500 МБ/с, или 5 ГТ/с ( Гигатранзакций/с ).
  • Внесены усовершенствования в протокол передачи между устройствами и программную модель.
  • Динамическое управление скоростью (для управления скоростью работы связи).
  • Оповещение о пропускной способности (для оповещения ПО об изменениях скорости и ширины шины).
  • Расширения структуры возможностей [ уточнить ] — расширение управляющих регистров для лучшего управления устройствами, слотами и интерконнектом).
  • Службы управления доступом — опциональные возможности управления транзакциями точка-точка.
  • Управление таймаутом выполнения.
  • Сброс на уровне функций — опциональный механизм для сброса функций ( англ. PCI functions) внутри устройства ( англ. PCI device).
  • Переопределение предела по мощности (для переопределения лимита мощности слота при присоединении устройств, потребляющих бо́льшую мощность).

PCI-Express 2.0 полностью совместим с PCI Express 1.1 (старые видеокарты будут работать в системных платах с новыми разъёмами, но только на скорости 2,5 ГТ/с, так как старые чипсеты не могут поддерживать удвоенную скорость передачи данных; новые видеоадаптеры будут без проблем работать в старых разъёмах стандарта PCI Express 1.х.).

Внешняя кабельная спецификация PCIe

7 февраля 2007 года PCI-SIG выпустила спецификацию внешней кабельной системы PCIe. Новая спецификация позволяет использовать кабели длиной до 10 метров, работающие с пропускной способностью 2,5 ГТ/с.

PCI-Express 2.1

По физическим характеристикам (скорость, разъём) соответствует 2.0, в программной части добавлены функции, которые в полной мере планируют внедрить в версии 3.0. Так как большинство системных плат продаётся с версией 2.0, наличие только видеокарты с 2.1 не даёт задействовать режим 2.1.

PCI-Express 3.0

В ноябре 2010 года были утверждены спецификации версии PCI Express 3.0. Интерфейс обладает скоростью передачи данных 8 GT/s ( Гигатранзакций/с ). Но, несмотря на это, его реальная пропускная способность всё равно была увеличена вдвое по сравнению со стандартом PCI Express 2.0. Этого удалось достигнуть благодаря более агрессивной схеме кодирования 128b/130b, когда 128 бит данных, пересылаемых по шине, кодируются 130 битами. При этом сохранилась полная совместимость с предыдущими версиями PCI Express. Карты PCI Express 1.x и 2.x будут работать в разъёме 3.0 и, наоборот, карта PCI Express 3.0 будет работать в разъёмах 1.х и 2.х (хотя и не сможет раскрыть весь свой скоростной потенциал). Для 4 линий скорость передачи данных составляет 4 Гбайт/с, для 16 линий — 16 Гбайт/с .

По данным PCI-SIG, первые тесты PCI-Express 3.0 начались в 2011 году, средства для проверки совместимости для партнёров появились лишь в середине 2011 года, а реальные устройства ― только в 2012 году.

PCI-Express 4.0

PCI-SIG заявила, что PCI-Express 4.0 может быть стандартизирован до конца 2016 года , однако на середину 2016 года, когда ряд чипов уже готовился к изготовлению, СМИ сообщали, что стандартизация ожидается в начале 2017 . Позднее сроки стандартизации были перенесены, и спецификация была опубликована только 5 октября 2017 года .

По сравнению со спецификацией PCI Express 3.0 максимальная скорость передачи данных по шине PCI Express удвоена — с 8 до 16 GT/s. Кроме того, уменьшены задержки, улучшена масштабируемость и поддержка виртуализации . Для 4 линий скорость передачи данных составляет 8 Гбайт/с, для 16 линий — 32 Гбайт/с .

7 ноября 2018 года AMD объявила о планах выпуска в продажу в четвёртом квартале 2018 года первого GPU с поддержкой PCI-Express 4.0 x16 . 27 мая 2019 года компания Gigabyte объявила о выпуске системных плат серии X570 Aorus. По словам производителя, эти платы «открывают эру PCIe 4.0» .

PCI-Express 5.0

В мае 2019 года появилась окончательная спецификация стандарта PCI Express 5.0 . Скорость передачи данных по шине PCI-Express составила 32 GT/s. Ожидается, что подобная скорость положительно повлияет на проекты, связанные с виртуальной реальностью . Для 4 линий скорость передачи данных составляет 16 ГБайт/с, для 16 линий — 64 ГБайт/с .

PCI-Express 6.0

11 января 2022 года PCI-SIG официально объявила о выпуске окончательной спецификации PCI Express 6.0. По сравнению с PCIe 5.0 произошло удвоение пропускной способности. Так, скорость передачи данных составляет 64 ГТ/с, а для 16 линий 256 Гбайт/с. Кроме того, посредством ( англ. Flit), использовано кодирование, позволяющее применять упрощённую систему коррекции ошибок Low-latency Forward Error Correction (FEC), передачу по схеме с амплитудно-импульсной модуляцией ( PAM4 ) и алгоритма CRC ( англ. Cyclic redundancy check), проверяющий без задержек целостность данных .

PCI-Express 7.0

В июне 2022 PCI-SIG анонсировал разработку спецификации PCI-E 7.0. Она будет обеспечивать скорость передачи данных до 128 ГТ/с и до 512 ГБ/с в каждом направлении в конфигурации ×16 с использованием той же сигнализации PAM4 , что и в версии PCI-E 6.0. Удвоение скорости передачи данных будет достигнуто за счет точной настройки параметров канала для уменьшения потерь сигнала и повышения энергоэффективности. Ожидается, что спецификация будет окончательна принята в 2025 году .

Пропускная способность

PCIe является полнодуплексным протоколом, то есть потоки приёма и передачи имеют независимые каналы и одинаковые максимальные скорости. Скорость компьютерных шин принято выражать в гигатранзакциях в секунду . За 1 транзакцию передаётся одно кодовое слово. Для расчёта пропускной способности 1 линии шины необходимо учесть ( англ. ) (для PCI-E 3.0 и выше — ( англ. ). Например, пропускная способность линии PCIe 1.0 составляет:

2,5 ГТ/с · 8/10 бит/Т = 2 Гбит/с = 0,25 ГБайт/с

Несмотря на то, что стандарт допускает 32 линии на порт, такие решения физически достаточно громоздки для прямой реализации и выпускаются только в проприетарных разъёмах.

Пропускная способность PCI Express в дуплексе (в обе стороны), Гбайт/с
Год
выпуска
Версия
PCI Express
Кодирование Скорость
передачи
одной
линии
Пропускная способность на x линий в дуплексе (в обе стороны)
×1 ×2 ×4 ×8 ×16
2002 1.0-1.1 8b/10b 2,5 ГТ/с 500 МБайт/с = 0,5 ГБайт/с 1 ГБайт/с 2 ГБайт/с 4 ГБайт/с 8 ГБайт/с
2007 2.0-2.1 8b/10b 5 ГТ/с 1 ГБайт/с 2 ГБайт/с 4 ГБайт/с 8 ГБайт/с 16 ГБайт/с
2010 3.0-3.1 128b/130b 8 ГТ/с 2 ГБайт/с 4 ГБайт/с 8 ГБайт/с 16 ГБайт/с 32 ГБайт/с (256 Gbit/s)
2017 4.0 128b/130b 16 ГТ/с 4 ГБайт/с 8 ГБайт/с 16 ГБайт/с 32 ГБайт/с 64 ГБайт/с (512 Gbit/s)
2019 5.0 128b/130b 32 ГТ/с 8 ГБайт/с 16 ГБайт/с 32 ГБайт/с 64 ГБайт/с 128 ГБайт/с (1024 Gbit/s)
2022 6.0 242B/256B, PAM-4 , FEC , 64 ГТ/с 16 ГБайт/с 32 ГБайт/с 64 ГБайт/с 128 ГБайт/с 256 ГБайт/с (2048 Gbit/s)
2025 7.0 242B/256B, PAM-4, FEC, FLIT 128 ГТ/с 32 ГБайт/с 64 ГБайт/с 128 ГБайт/с 256 ГБайт/с 512 ГБайт/с ( 4096 Gbit/s )

Интерфейсы

  • () — замена форм-фактора Mini PCI . На разъём Mini Card выведены шины: ×1 PCIe, USB 2.0 и SMBus.
    • M.2 — вторая версия Mini PCIe, до ×4 PCIe и SATA.
  • ExpressCard — подобен форм-фактору PCMCIA . На разъём ExpressCard выведены шины ×1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
  • AdvancedTCA , MicroTCA — форм-фактор для модульного телекоммуникационного оборудования .
  • Mobile PCI Express Module (MXM) — промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA . Его используют для подключения графических ускорителей.
  • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении .
  • — спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения , FPE и их взаимное расположение.

PCI Express ×1

Mini PCI-E

См. также M.2

Mini PCI Express — формат шины PCI Express для портативных устройств.

Для этого стандарта разъёма выпускается много периферийных устройств:

  • WiFi-карты
  • WiMax-карты
  • GSM-модемы
  • GPS-приёмники
  • SSD-накопители — использует нестандартную распиновку разъёма Mini PCI-E (SSD Mini PCI Express)
  • Контроллеры USB (2.0 или 3.0), SATA (I, II или III)
  • Контроллер COM-портов (RS232)
  • SMBus
  • Выводы для индикаторных светодиодов
  • Выводы подключения SIM-карт (для GSM WCDMA)
  • Имеет зарезервированные контакты (для будущих устройств)
  • Питание 1,5 В и 3,3 В
MiniPCI и MiniPCI Express

SSD Mini PCI Express

  • PATA
  • SATA
  • USB
  • Питание 3.3 В

ExpressCard

Слоты ExpressCard применяются в ноутбуках для подключения:

  • Плат SSD накопителей
  • Видеокарт
  • Контроллеров 1394/FireWire (iLINK)
  • Док-станций
  • Измерительных приборов
  • Адаптеров карт памяти (CF, MS, SD, xD, и т. д.)
  • Сетевых адаптеров
  • Контроллеров параллельных и последовательных портов
  • Адаптеров PC Card/PCMCIA
  • Дистанционного управления
  • Контроллеров SATA
  • Адаптеров SmartCard
  • ТВ-тюнеров
  • Контроллеров USB
  • Беспроводных сетевых адаптеров Wi-Fi
  • Беспроводных широкополосных интернет-адаптеров (3G, CDMA, EVDO, GPRS, UMTS, и т. д.)
  • Звуковых карт для домашнего мультимедиа и профессиональных аудиоинтерфейсов.

Оптический

В 2023 году комитет по стандартизации PCI-SIG начал изучать возможность использования в PCIe 8.0 или 9.0 оптических соединений вместо электрических. Это позволит сэкономить энергию, снизить тепловыделение и повысит скорость передачи данных .

Конкурирующие протоколы

Кроме PCI Express, существует ещё ряд высокоскоростных стандартизованных последовательных интерфейсов, вот некоторые из них: HyperTransport , InfiniBand , RapidIO , и . Каждый интерфейс имеет своих сторонников среди промышленных компаний, так как на разработку спецификаций протоколов уже ушли значительные суммы, и каждый консорциум стремится подчеркнуть преимущества именно своего интерфейса над другими.

Стандартизированный высокоскоростной интерфейс, с одной стороны, должен обладать гибкостью и расширяемостью, а с другой стороны, должен обеспечивать низкое время задержки и невысокие накладные расходы (то есть доля служебной информации пакета не должна быть велика). В сущности, различия между интерфейсами заключаются именно в выбранном разработчиками конкретного интерфейса компромиссе между этими двумя конфликтующими требованиями.

К примеру, дополнительная служебная маршрутная информация в пакете позволяет организовать сложную и гибкую маршрутизацию пакета, но увеличивает накладные расходы на обработку пакета, также снижается пропускная способность интерфейса, усложняется программное обеспечение, которое инициализирует и настраивает устройства, подключённые к интерфейсу. При необходимости обеспечения горячего подключения устройств необходимо специальное программное обеспечение, которое бы отслеживало изменение в топологии сети. Примерами интерфейсов, которые приспособлены для этого, являются RapidIO, InfiniBand и StarFabric.

В то же время, укорачивая пакеты, можно уменьшить задержку при передаче данных, что является важным требованием к интерфейсу памяти. Но небольшой размер пакетов приводит к тому, что доля служебных полей пакета увеличивается, что снижает эффективную пропускную способность интерфейса. Примером интерфейса такого типа является HyperTransport.

Положение PCI-Express — между описанными подходами, так как шина PCI Express предназначена для работы в качестве локальной шины, нежели шины процессор-память или сложной маршрутизируемой сети. Кроме того, PCI Express изначально задумывалась как шина, логически совместимая с шиной PCI, что также внесло свои ограничения.

Также существуют специализированные шины для подключения чипсетов (между северным и южным мостом ), созданные на базе физического протокола PCI Express (обычно ×4), но с иными логическими протоколами. Например, в платформах Intel используется шина DMI , а в системах AMD с чипсетом AMD Fusion — шина .

См. также

Примечания

  1. ↑ Слюсар В. И. Новые стандарты промышленных компьютерных систем. //Электроника: наука, технология, бизнес. — 2005. — № 6. — С. 52 — 53. от 4 марта 2016 на Wayback Machine
  2. ↑ Слюсар В. И. PCI Express. Лицо стандарта.// Мир автоматизации. — 2006. — № 1. — C. 38 — 41. от 27 августа 2018 на Wayback Machine
  3. (неопр.) . Дата обращения: 15 мая 2018. Архивировано из 20 ноября 2010 года.
  4. Андрей Шиллинг. (неопр.) . Hardwareluxx (30 мая 2019). Дата обращения: 9 августа 2023.
  5. (неопр.) PCI SIG (18 декабря 2014). Архивировано из 18 декабря 2014 года.
  6. от 28 августа 2016 на Wayback Machine / EETimes, 2016-06-28: «won’t be final until early next year» (англ.)
  7. (англ.) . pcisig.com. Дата обращения: 18 января 2018. 18 января 2018 года.
  8. (неопр.) . Дата обращения: 18 января 2018. 27 октября 2017 года.
  9. (неопр.) . Дата обращения: 7 ноября 2018. 7 ноября 2018 года.
  10. (неопр.) . GIGABYTE. Дата обращения: 27 мая 2019. 27 мая 2019 года.
  11. . Tom's Hardware (англ.) . 2017-08-29 . Дата обращения: 18 января 2018 .
  12. Николай Хижняк. (рус.) . 3DNews (11 января 2022). Дата обращения: 9 августа 2023.
  13. Michael Crider. (англ.) . PCWorld (14 июня 2022). Дата обращения: 9 августа 2023.
  14. Paul Alcorn. (англ.) . Tom’s Hardware (25 июня 2022). Дата обращения: 9 августа 2023.
  15. Николай Хижняк. (рус.) . 3DNews (21 июня 2022). Дата обращения: 9 августа 2023.
  16. 18 февраля 2010 года. (англ.)
  17. (неопр.) . pinouts.ru . Дата обращения: 28 июля 2022. 1 июня 2022 года.
  18. (неопр.) Дата обращения: 10 апреля 2010. Архивировано из 16 февраля 2011 года.
  19. Meghan Zea. (англ.) . Business Wire (2 августа 2023). Дата обращения: 9 августа 2023.
  20. Ryan Smith. (англ.) . AnandTech (2 августа 2023). Дата обращения: 9 августа 2023.
  21. Mark Hachman. (англ.) . PCWorld (2 августа 2023). Дата обращения: 9 августа 2023.
  22. Павел Котов. (рус.) . 3DNews (3 августа 2023). Дата обращения: 9 августа 2023.
  23. Scott Mueller. «Hub Architecture», «Other Processor/Chipset Interconnects» // (англ.) . — Que Publishing, 2013-03-07. — P. 187—188. — ISBN 978-0-13-310536-0 . 2 августа 2017 года.

Литература

  • Ravi Budruk, Don Anderson, Tom Shanley. PCI Express System Architecture. — Addison-Wesley Professional, 1999. — С. 832. — (PC System Architecture Series). — ISBN 978-0201309744 .
  • Doug Abbott. . — 2-е. — Newnes, 2004. — С. . — (Demystifying Technology Series). — ISBN 978-0750677394 .

Ссылки

  • One Stop Systems , Inc
  • С. Озеров, А. Карабуто. // Sec.Ru
  • // techlabs.by, 26.11.2008
  • // IXBT.com , 4 сентября 2003
  • (англ.)
  • (англ.)
  • (англ.)
  • (англ.)
  • (англ.) ( PDF )
  • (англ.)
  • (англ.)
  • (англ.)
  • от 7 июня 2023г (рус.)

Same as PCI Express