Мост через Корабельный фарватер
- 1 year ago
- 0
- 0
Мост через Петровский фарватер — автодорожный металлический вантовый мост через ( Невская губа Финского залива ) в Санкт-Петербурге , часть внутригородской платной автомагистрали Западный скоростной диаметр (3СД). Построен в 2013—2016 годах. Проезд по мосту платный, пешеходное и велосипедное движение по мосту запрещено. Эксплуатацию Западного скоростного диаметра до 2042 года в рамках 30-летней концессии осуществляет ООО «Магистраль северной столицы» .
Мост входит в состав северной эстакады основного хода ЗСД, соединяя Василеостровский и Приморский районы . Рядом с мостом расположена Газпром Арена . Ближайшая станция метрополитена — «Зенит» . Расположен от ПК176+72,08 до ПК182+53,68. С южной стороны к мосту примыкает эстакада со стороны Васильевского острова (ПК171+37,75—ПК176+72,08), с северной — мост в устье рек Средняя Невка и Большая Невка (ПК182+53,68—ПК199+62,22) .
Мост сооружён в рамках строительства Центрального участка ЗСД по программе государственно-частного партнерства в соответствии с Законом Санкт-Петербурга № 627-100 от 25 декабря 2006 года «Об участии Санкт-Петербурга в государственно-частных партнерствах» . В 2012 году правительство Санкт-Петербурга утвердило постановление о строительстве двух заключительных очередей Западного скоростного диаметра . В августе 2012 года победителем концессионного конкурса стал консорциум «Магистраль Северной столицы», который включает ВТБ Капитал , Газпромбанк , итальянскую строительную компанию Astaldi S.p.A и турецкие IC Ictas Insaat A.S. и Mega Yapi . Генеральным проектировщиком являлся . Проект моста был разработан ЗАО «Институт Гипростроймост — Санкт-Петербург» (главный инженер проекта — И. Семенов, главный архитектор проекта — А. Малышев ), который выполнил также и рабочую документацию . Экспертиза проектных решений выполнена французской фирмой Setec TPI . Соглашение о строительстве Центрального участка Западного скоростного диаметра было подписано 23 декабря 2012 года .
По первоначальному проекту, разработанному в 2007 году и получившему положительное заключение Главгосэкспертизы, предполагалось построить из преднапряжённого железобетона со шпренгельно-вантовой фермой с центральным пролётом 220 м . По конструкции мост был схож с мостом через Даугаву в Риге . Однако генеральный подрядчик отказался от этого варианта (по графику бетонирование приходилось на зимнее время, что требовало дополнительных затрат и времени) и к разработке был принят и согласован мост вантовой системы со сталежелезобетонной балкой жёсткости . Проект был полностью переработан всего за полгода, после чего успешно прошел экспертизу .
Строительные работы начались в марте 2013 года. Строительство моста вела турецкая компания Mega Yapi. Устройство вантовой системы моста выполнялось под руководством супервайзеров швейцарской компании VSL, которая была также и поставщиком вант . Пилоны сооружались в скользящей опалубке . Скорость бетонирования достигала 2,5—2,8 м в сутки. Вертикальное перемещение опалубки осуществлялось с помощью двенадцати зажимных домкратов и подъёмных труб. Техническое сопровождение работ выполняла австрийская компания Gleitbau-Salzburg, которая была также и поставщиком опалубки . Армирование тела пилонов выполнялось непрерывно на верхней рабочей платформе. Для доступа на скользящую опалубку был установлен грузопассажирский подъёмник, снабжённый специальным типом подвижного крепления к скользящей опалубке . Для сооружения пилонов на отдельном фундаменте были установлены башенные краны KROLL K-320 грузоподъёмностью 16 т с высотой подъёма до 135,5 м. Краны наращивались по высоте и закреплялись к пилонам по ходу их сооружения .
В конце лета 2015 года при строительстве северного пилона на отметке + 84,5 до отметки + 95,5 м был уложен бетон более низкого класса . В итоге было принято решение срезать его методом гидродемонтажа. Общий объем демонтируемого бетона составил 78 м. куб. Работы начались в августе и закончились в ноябре, после чего строительство опоры возобновилось . К ноябрю 2015 года было полностью завершено строительство южного пилона V-12; забетонированы поперечные распорки; начата подготовка к установке поперечных оттяжек пилона .
В январе 2016 года на северном пилоне на высоте более 100 м произошел пожар, который продолжался 7 часов . Комиссия, сформированная после пожара, назвала основной причиной пожара короткое замыкание в одном из термоматов , которые были уложены для обогрева свежеуложенного бетона . По экспертному заключению проектных организаций последствия возгорания были признаны незначительными и не влияющими на надёжность и несущую способность конструкции пилона . Во время пожара машинист башенного крана Тамара Пастухова спасла трёх рабочих. Женщина была награждена ведомственной наградой МЧС России — медалью «За отвагу на пожаре» , получила от министра транспорта нагрудный знак «Почётный дорожник России» и российское гражданство .
Для устройства вантовой системы и доступа к вантовым узлам на отметке +62,75 м были установлены сплошные леса высотой 50 м; в верхней части пилонов были установлены консольные краны . Ванты на мосту установлены попарно, благодаря чему удалось уменьшить объем крановых работ и количество габаритных протягивающих лебедок. При этом скорость монтажа составляла более одной ванты за день . Для обеспечения сбалансированной нагрузки на пролёты все три слоя вант устанавливались и натягивались одновременно на основном и боковых пролётах .
Оптимальным решением для строительства пролётного строения моста стала следующая технология: укрупнительная сборка на стапеле и продольная надвижка – для боковых пролётов; встречный навесной монтаж с использованием монтажных агрегатов и плавсистемы — для центрального вантового пролёта .
Сооружение металлической балки жёсткости в боковых пролётах выполнялось методом конвейерно-тыловой сборки и надвижки. Для сборки блоков пролётного строения были сооружены стапели, а для надвижки – временные опоры. Поэтапная надвижка смонтированных частей пролётного строения велась параллельно с обеих сторон (со стороны Васильевского и Крестовского островов) при помощи стрендовых домкратов компании VSL грузоподъёмностью 70 т .
Для сооружения русловой части пролётного строения использовалась технология навесного монтажа укрупнёнными сегментами. Укрупнительная сборка сегментов выполнялась на стапеле. Далее сегменты по специальным накаточным устройствам (способом поперечной и продольной надвижки) перемещались на транспортную баржу. Баржа выводилась в акваторию Петровского фарватера и позиционировалась в необходимом для подъёма сегментов положении с помощью буксиров, якорей и лебёдок . Далее проводилось крепление траверс к монтируемому сегменту. При помощи монтажных агрегатов, медленно, на протяжении нескольких часов, до уровня пролёта с баржи поднимали блоки. Для подъёма каждого сегмента применялось четыре стрендовых домкрата фирмы VSL. После подъёма в проектное положение между сегментами осуществлялось болтовое соединение, после чего устанавливался следующий комплект вант VSL .
Эти работы проводились с марта 2015 по август 2016 года в технологическое окно (с 22:00 до 6:00), когда Петровский фарватер перекрывался для судоходства . Всего на высоту 30 м с баржи до уровня пролётного строения было поднято 15 сегментов, длиной в 13 м и весом до 142 т каждый . Основные работы по подъёму замыкающего блока моста проводились в ночь с 6 на 7 августа . Динамические и статические испытания моста были проведены с использованием нескольких десятков самосвалов, гружёных щебнем .
Торжественное открытие Центрального участка ЗСД состоялось 2 декабря 2016 года в присутствии президента РФ Владимира Путина . 4 декабря было открыто движение по Центральному участку ЗСД и всей протяженности магистрали . 25 июня 2017 году во время работ по демонтажу шпунта вокруг южного пилона моста в воду с баржи упал строительный кран. Пострадал крановщик, которого доставили в реанимацию .
Мост пятипролётный сталежелезобетонный двухпилонный вантовый . Схема моста: 60 + 110 + 240 + 110 + 60 м. Мост в плане находится на прямой и двух переходных кривых, в профиле – на выпуклой кривой радиусом 10 км. Подмостовые габариты: низовой 166 х 25 м и верховой – 80 х 25 м. Полная длина 580 м. Общая длина моста составляет 580 м, ширина — 50 м (ширина проезжей части 35м) .
Пролётное строение представляет собой балку жёсткости из двух внутренних главных балок двутаврового сечения высотой 1,72 м и двух наружных главных балок коробчатого пятиугольного сечения высотой 1,72 м в пределах вантовой части. В крайних пролётах балка жёсткости состоит из шести главных балок коробчатого пятиугольного сечения высотой 1,72 м. Главные балки объединены между собой поперечными балками, установленными с шагом 6,5 м (3 м в крайних пролётах) . Железобетонная плита проезжей части выполняется из сборных плит толщиной 220 мм с последующим омоноличиванием. В крайних пролётах плита из монолитного железобетона толщиной 205 мм . Конструкция моста имеет ряд инновационных технических решений. Впервые в России вантовый мост имеет сталежелезобетонный центральный пролёт, состоящий из металлической балки и железобетонной плиты. Другой конструктивной особенностью моста является то, что балка жёсткости не опирается на пилоны, а висит на вантах .
Пилоны железобетонные, расположены по оси трассы в разделительной полосе. Минимальное сечение — 4 х 4,865 м от отметки +25,00 до +114,00. В центре пилонов установлен 21 блок металлических сердечников . Высота пилонов от верха ростверков — 124 м . Фундаменты опор – буронабивные сваи диаметром 1,5 м .
Учитывая значительную ширину проезжей части, рассчитанную под 8 полос движения, для моста реализована оригинальная вантовая конструкция, предусматривающая размещение групп вант не только в продольном, но и в поперечном направлении относительно оси проезда . Ванты, находящиеся ближе к пилону, крепятся к верхней, а не нижней его части – это сделано для того, чтобы не нарушить установленные габариты проезда . В поперечной плоскости стоечным пилонам добавляют устойчивости боковые анкерные оттяжки, идущие от верхней части пилона почти до уровня воды .
Ванты системы SSI 2000e изготовлены швейцарской компанией VSL . Для 120 вант моста потребовалось примерно 405 тыс. м вантовых прядей. Вантовые фермы моста расположены в трёх плоскостях: одна проходит по центру пролёта, две по краям. Ванты состоят из 7 оцинкованных проволочных канатов, смазанных воском и заключённых в плотно-экструдированную полиэтиленовую оболочку. Пучок прядей установлен во внешнюю вантовую оболочку из полиэтилена высокой плотности. Шаг крепления вант в балке жёсткости составляет 13 м . Для предотвращения вибрации вант установлено внутреннее фрикционное демпфирующее устройство , также разработанное компанией VSL .
Мост предназначен для движения автотранспорта. Проезжая часть моста включает в себя 8 полос для движения автотранспорта (по 4 в каждом направлении). Габарит проезжей части: 2 х (Г-17,5) . Покрытие на проезжей части моста – асфальтобетон. По краям моста устроено два служебных прохода шириной 0,75 м , которые отделены от проезжей части металлическим барьерным ограждением. Перила моста металлические простого рисунка. В соответствии с правилами дорожного движения пешеходное и велосипедное движение по мосту запрещено (так как мост является частью скоростной магистрали) . Начиная с 2018 года на один день в году во время проведения «ЗСД Фонтанка Фест» центральный участок Западного скоростного диаметра открывают для велосипедистов и бегунов .