Interested Article - Элементарная частица

Мезон Мезон Барион Нуклон Кварк Лептон Электрон Адрон Атом Молекула Фотон W- и Z-бозоны Глюон Гравитон Электромагнитное взаимодействие Слабое взаимодействие Сильное взаимодействие Гравитация Квантовая электродинамика Квантовая хромодинамика Квантовая гравитация Электрослабое взаимодействие Теория великого объединения Теория всего Элементарная частица Вещество Бозон Хиггса
Краткий обзор различных семейств и составных частиц и теории, описывающие их взаимодействия . Элементарные частицы слева — фермионы , справа — бозоны . ( Термины — гиперссылки на статьи Википедии )
Стандартная модель элементарных частиц

Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на данный момент на практике невозможно расщепить на составные части .

Следует иметь в виду, что некоторые элементарные частицы ( электрон , нейтрино , кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы . Другие элементарные частицы (так называемые составные частицы , в том числе частицы, составляющие ядро атома протоны и нейтроны ) имеют сложную внутреннюю структуру, но тем не менее, по современным представлениям, разделить их на части невозможно по причине эффекта конфайнмента .

Всего вместе с античастицами открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются по экспоненциальному закону с постоянной времени от приблизительно 880 секунд (для свободного нейтрона ) до ничтожно малой доли секунды (от 10 −24 до 10 −22 с для резонансов ).

Строение и поведение элементарных частиц изучается физикой элементарных частиц .

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля ).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии , импульса, момента импульса, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: время жизни , масса , спин , электрический заряд , магнитный момент , барионный заряд , лептонный заряд , странность , очарование , прелесть , истинность , изотопический спин , чётность , зарядовая чётность , G-чётность , CP-чётность , T-чётность , R-чётность , P-чётность .

Классификация

По времени жизни

Все элементарные частицы делятся на два класса:

По массе

Все элементарные частицы делятся на два класса:

По величине спина

Все элементарные частицы делятся на два класса:

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

Фундаментальные (бесструктурные) частицы

Адроны и лептоны образуют вещество . Калибровочные бозоны — это кванты разных типов взаимодействий.

Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон , предсказанный в 1964 году и обнаруженный в 2012 году на Большом адронном коллайдере .

Размеры элементарных частиц

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10 −15 м , что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц — калибровочных бозонов, кварков и лептонов — в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10 −18 м ) ( см. пояснение ). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно может оказаться планковской длиной , равной 1,6·10 −35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет , представляющий частицу как суперпозицию точно локализованных квантовых состояний , всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими — например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц фермион-антифермионных пар (см. Поляризация вакуума ) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов , которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны , которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов , ~3×10 −18 м , а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона ( ~10 −15 м ), выступающего здесь как переносчик взаимодействия.

История

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи . Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков .

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин « фундаментальные частицы» .

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны ( фотон , глюоны , W - и Z -бозоны ), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса , отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью — например, такие, как гравитон (частица, гипотетически переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу .

Фермионы

12 ароматов фермионов разделяются на 3 семейства ( поколения ) по 4 частицы в каждом. Шесть из них — кварки . Другие шесть — лептоны , три из которых являются нейтрино , а оставшиеся три несут единичный отрицательный заряд: электрон , мюон и тау-лептон .

Поколения частиц
Первое поколение Второе поколение Третье поколение
Электрон : e Мюон : μ Тау-лептон : τ
Электронное нейтрино : ν e Мюонное нейтрино : ν μ Тау-нейтрино :
u-кварк («верхний»): u c-кварк («очарованный»): c t-кварк («истинный»): t
d-кварк («нижний»): d s-кварк («странный»): s b-кварк («прелестный»): b

Античастицы

Также существуют 12 фермионных античастиц, соответствующих вышеуказанным двенадцати частицам.

Античастицы
Первое поколение Второе поколение Третье поколение
позитрон : e + Положительный мюон: μ + Положительный тау-лептон: τ +
Электронное антинейтрино: Мюонное антинейтрино: Тау-антинейтрино:
u -антикварк: c -антикварк: t -антикварк:
d -антикварк: s -антикварк: b -антикварк:

Кварки

Кварки и антикварки никогда не были обнаружены в свободном состоянии — это объясняется явлением конфайнмента . На основании симметрии между лептонами и кварками, проявляемой в электромагнитном взаимодействии , выдвигаются гипотезы о том, что эти частицы состоят из более фундаментальных частиц — преонов .

Неизвестные частицы

По мнению большинства физиков, существуют неизвестные доселе типы частиц, из которых состоит тёмная материя

См. также

Примечания

  1. Что означает «элементарная частица»? Автор в затруднении ответить на этот вопрос; термин «элементарная частица» скорее относится к уровню наших знаний.

    Ферми Э. Лекции по атомной физике // М: ИЛ, 1952. — С. 9.
  2. Вообще можно сказать, что на каждом этапе развития науки мы называем элементарными те частицы, строения которых не знаем и которые рассматриваем как точечные.

    Ферми Э. Лекции по атомной физике // М: ИЛ, 1952. — С. 9.
  3. . Дата обращения: 1 марта 2015. 9 мая 2017 года.
  4. , статья «Фундаментальная длина» ( ).
  5. // «Популярная механика» № 2, 2015 ( )
  6. , с. 386.

Литература

Ссылки

Источник —

Same as Элементарная частица