Зако́ны Ке́плера
— три эмпирических соотношения, установленные
Иоганном Кеплером
на основе длительных астрономических наблюдений
Тихо Браге
. Изложены Кеплером в работах, опубликованных между 1609
и 1619
годами. Описывают идеализированную
гелиоцентрическую орбиту
планеты.
Соотношения Кеплера позволили
Ньютону
постулировать
закон всемирного тяготения
, который стал фундаментальным в классической механике. В её рамках законы Кеплера являются решением
задачи двух тел
в случае пренебрежимо малой массы планеты, то есть в предельном переходе
, где
,
— массы планеты и звезды соответственно.
Форма эллипса и степень его сходства с окружностью характеризуется отношением
, где
— расстояние от центра эллипса до его фокуса (фокальное расстояние),
—
большая полуось
. Величина
называется
эксцентриситетом
эллипса. При
, и, следовательно,
эллипс превращается в окружность.
Второй закон Кеплера (закон площадей)
Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает собой равные площади.
Применительно к нашей Солнечной системе, с этим законом связаны два понятия:
перигелий
— ближайшая к Солнцу точка орбиты, и
афелий
— наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.
Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по
эклиптике
к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает также, что сила, управляющая орбитальным движением планет, направлена к Солнцу.
где
и
— периоды обращения двух планет вокруг Солнца, а
и
— длины больших полуосей их орбит. Утверждение справедливо также для спутников.
Ньютон
установил, что
гравитационное притяжение
планеты определённой массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:
,
где
— масса Солнца, а
и
— массы планет.
Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.
Вывод законов Кеплера из законов классической механики
Вывод Первого закона Кеплера
Рассмотрим движение в
полярных координатах
, центр которых совпадает с центром масс системы (приближенно, совпадает с Солнцем).
Пусть
— радиус-вектор к планете, за
обозначим единичный вектор, указывающий его направление. Аналогично введём
— единичный вектор, перпендикулярный
, направленный в сторону увеличения полярного угла
. Запишем производные по времени, обозначая их точками:
Закон всемирного тяготения Ньютона
гласит, что «каждый объект во Вселенной притягивает каждый другой объект по линии, соединяющей центры масс объектов, пропорционально массе каждого объекта, и обратно пропорционально квадрату расстояния между объектами». То есть ускорение имеет вид:
Или в координатной форме:
Во втором уравнении распишем
и
:
Избавляясь от времени и разделяя переменные, получим:
Интегрирование которого даст:
Полагая
и упрощая логарифмы имеем окончательно
Константа
по смыслу является удельным угловым моментом (
). Мы показали, что в поле центральных сил он сохраняется.
Для работы с первым уравнением удобно произвести замену:
И переписать производные, попутно избавляясь от времени
Уравнение движения в направлении
тогда запишется:
Закон всемирного тяготения Ньютона связывает силу на единицу массы с расстоянием как
где
— универсальная гравитационная константа и
— масса звезды.
В результате:
Это дифференциальное уравнение можно переписать в полных производных:
Избавляясь от которых получим:
И окончательно:
Разделив переменные и произведя элементарное интегрирование получим общее решение:
для констант интегрирования
и
, зависящих от начальных условий.
Заменяя
на 1/
и вводя
, имеем окончательно:
Мы получили уравнение конического сечения с параметром
и
эксцентриситетом
и началом системы координат в одном из фокусов. Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона.
Вывод Второго закона Кеплера
По определению
момент импульса
точечного тела с массой
и скоростью
записывается в виде:
.
где
— радиус-вектор тела, а
— его импульс. Площадь, заметаемая радиус-вектором
за время
из геометрических соображений равна
,
где
представляет собой угол между векторами
и
.
При выводе первого закона было показано, что
. То же самое можно получить простым дифференцированием углового момента:
Последний переход объясняется равенством нулю векторного произведения колинеарных векторов. Действительно, сила здесь всегда направлена по радиус-вектору, тогда как импульс направлен вдоль скорости по определению.
Получили, что
не зависит от времени. Значит
постоянен, а следовательно и пропорциональная ей скорость заметания площади
— константа.
Вывод Третьего закона Кеплера
Второй закон Кеплера утверждает, что радиус-вектор обращающегося тела заметает равные площади за равные промежутки времени. Если теперь мы возьмём очень малые промежутки времени в момент, когда планета находится в точках
(
перигелий
) и
(
афелий
), то мы сможем аппроксимировать площадь треугольниками с высотами, равными расстоянию от планеты до Солнца, и основанием, равным произведению скорости планеты на время.
Используя закон сохранения энергии для полной энергии планеты в точках
и
, запишем
Теперь, когда нашли
, мы можем найти секторную скорость. Так как она постоянна, то можем выбрать любую точку эллипса: например, для точки
B
получим
Однако полная площадь эллипса равна
(что равно
, поскольку
). Время полного оборота, таким образом, равно
Заметим, что если масса
не пренебрежимо мала по сравнению с
, то планета будет обращаться вокруг Солнца с той же скоростью и по той же орбите, что и материальная точка, обращающаяся вокруг массы
(см.
приведённая масса
). При этом массу
в последней формуле нужно заменить на
:
Альтернативный расчёт
Рассмотрим планету как точку массой
, вращающейся по эллиптической орбите, в двух положениях:
перигелий с радиус-вектором
, скоростью
;
афелий с радиус-вектором
, скоростью
.
Запишем закон сохранения момента импульса
и закон сохранения энергии
,
где
M
— масса Солнца.
Решая систему, нетрудно получить соотношение на скорость планеты в точке «перигелий»:
.
Выразим секторную скорость (которая по второму закону Кеплера является постоянной величиной):
.
Вычислим площадь эллипса, по которому движется планета. С одной стороны:
где
— длина большой полуоси,
— длина малой полуоси орбиты.
С другой стороны, воспользовавшись тем, что для вычисления площади сектора можно перемножить секторную скорость на период оборота:
.
Следовательно,
.
Для дальнейших преобразований воспользуемся геометрическими свойствами эллипса. Имеем соотношения
Подставим в формулу площади эллипса:
Откуда окончательно получим:
или в традиционном виде
Примечания
Holton, Gerald James.
/ Holton, Gerald James, Brush, Stephen G.. — 3rd paperback. — Piscataway, NJ : Rutgers University Press, 2001. — P. 40–41. —
ISBN 978-0-8135-2908-0
.
(неопр.)
. Дата обращения: 12 декабря 2021. Архивировано 12 декабря 2021 года.
Astronomia nova Aitiologitis, seu Physica Coelestis tradita Commentariis de Motibus stellae Martis ex observationibus G.V. Tychnonis. Prague 1609.
Johannes Kepler,
Harmonices Mundi
[The Harmony of the World] (Linz, (Austria): Johann Planck, 1619), book 5, chapter 3,
: [
28 марта 2016
] // Элементы. — Из кн.
Трефил Дж.
Природа науки. 200 законов мироздания. (Geleos, 2007.) = The Nature of Science. (2003) = James Trefil. Cassel's Laws of Nature: An A–Z of Laws and Principles Governing the Workings of Our Universe. (2002).