Электромагнитный спектр
- 1 year ago
- 0
- 0
Электромагни́тный спектр — распределение энергии электромагнитного излучения источника по частоте , длине волны или иному аналогичному параметру . В общем случае охватывает совокупность всех частотных диапазонов , но в зависимости от задачи может ограничиваться, например, только видимой областью . Показывает, в какой мере в исследуемом сигнале представлены ультрафиолетовое излучение, синий, зеленый и другие цвета, инфракрасная составляющая.
Является одной из разновидностей физических спектров . Характеризуется спектральной плотностью . Возможные размерности: ( Дж /м 3 )/ Гц , (Дж/м 3 )/м и другие, нередко приводится в относительных безразмерных единицах. Экспериментально регистрируется путём детектирования интенсивности излучения в выделяемых из сигнала (скажем, при помощи монохроматора ) узких эквидистантных спектральных интервалах.
Характеристика электромагнитного спектра — спектральная плотность энергии излучения — представляет собой энергию, приходящуюся на малый интервал по некоторой переменной и отнесённую к ширине этого интервала. В качестве переменной, определяющей положение точек спектра, могут выступать
Энергия фотона, согласно квантовой механике , пропорциональна частоте: , где h — постоянная Планка , Е — энергия, — частота; в данном контексте значения энергии обычно выражаются в электронвольтах . Длина электромагнитной волны в вакууме обратно пропорциональна частоте: , где — скорость света . Говоря о длине электромагнитных волн в среде, обычно подразумевают эквивалентную величину длины волны в вакууме, которая отличается на коэффициент преломления , так как частота волны при переходе из одной среды в другую сохраняется, а длина волны — изменяется.
Размерность спектра определяется выбором переменной: например, если это частота, то будет (Дж/м 3 )/Гц, а если длина волны то (Дж/м 3 )/м. Иногда вместо объёмной плотности энергии рассматривается поверхностная плотность мощности электромагнитного излучения — тогда размерности, соответственно, (Вт/м 2 )/Гц или (Вт/м 2 )/м.
Шкала частот (длин волн, энергий фотонов) является непрерывной, но традиционно разбивается (см. ниже) на ряд диапазонов. Соседние диапазоны могут немного перекрываться.
Гамма-лучи имеют энергию выше 124 000 эВ и длину волны меньше 0,01 нм = 0,1 Å .
Источники: космос , ядерные реакции , радиоактивный распад , синхротронное излучение .
Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики — γ-оптики .
Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты — электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).
Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение ); это позволяет, в частности, исследовать состав веществ ( рентгено-флюоресцентный анализ ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.
В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод .
Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)
Наименование | Аббревиатура | Длина волны в нанометрах | Количество энергии на фотон |
---|---|---|---|
Ближний | NUV | 400 — 300 | 3,10 — 4,13 эВ |
Средний | MUV | 300 — 200 | 4,13 — 6,20 эВ |
Дальний | FUV | 200 — 122 | 6,20 — 10,2 эВ |
Экстремальный | EUV, XUV | 121 — 10 | 10,2 — 124 эВ |
Вакуумный | VUV | 200 — 10 | 6,20 — 124 эВ |
Ультрафиолет А, длинноволновой диапазон, Чёрный свет | UVA | 400 — 315 | 3,10 — 3,94 эВ |
Ультрафиолет B (средний диапазон) | UVB | 315 — 280 | 3,94 — 4,43 эВ |
Ультрафиолет С, коротковолновой, гермицидный диапазон | UVC | 280 — 100 | 4,43 — 12,4 эВ |
Излучение оптического диапазона свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца ), флюоресценция, химические реакции, светодиоды.
Цвета видимого излучения, соответствующие монохроматическому излучению , называются спектральными . Спектр и спектральные цвета можно увидеть при прохождении узкого светового луча через призму или какую-либо другую преломляющую среду. Традиционно, видимый спектр делится, в свою очередь, на диапазоны цветов:
Цвет | Диапазон длин волн, нм | Диапазон частот, ТГц | Диапазон энергии фотонов, эВ |
---|---|---|---|
Фиолетовый | 380—440 | 790—680 | 2,82—3,26 |
Синий | 440—485 | 680—620 | 2,56—2,82 |
Голубой | 485—500 | 620—600 | 2,48—2,56 |
Зелёный | 500—565 | 600—530 | 2,19—2,48 |
Жёлтый | 565—590 | 530—510 | 2,10—2,19 |
Оранжевый | 590—625 | 510—480 | 1,98—2,10 |
Красный | 625—740 | 480—405 | 1,68—1,98 |
Ближнее инфракрасное излучение занимает диапазон от 207 ТГц (0,857 эВ) до 405 ТГц (1,68 эВ). Верхняя граница определяется способностью человеческого глаза к восприятию красного цвета, различной у разных людей. Как правило, прозрачность в ближнем инфракрасном излучении соответствует прозрачности в видимом свете.
Инфракрасное излучение расположено между видимым светом и терагерцовым излучением. Диапазон: от 2000 мкм (150 ГГц) до 740 нм (405 ТГц).
Терагерцовое (субмиллиметровое) излучение расположено между инфракрасным излучением и микроволнами, в диапазоне от 1 мм (300 ГГц) до 0,1 мм (3 ТГц).
ТГц излучение — не ионизирующее , легко проходит сквозь большинство диэлектриков, но сильно поглощается проводящими материалами и некоторыми диэлектриками. Например, дерево, пластик, керамика для него прозрачны, а металл и вода — нет.
Для электромагнитных волн с частотой ниже 300 ГГц существуют достаточно монохроматичные источники, излучение которых пригодно для амплитудной и частотной модуляции . Поэтому распределение частот в этой области всегда имеет в виду задачи передачи сигналов .