Зенит (космический аппарат)
- 1 year ago
- 0
- 0
Dawn (с англ. — «Рассвет», произносится Дон ) — автоматическая межпланетная станция (АМС), запущенная НАСА 27 сентября 2007 года для исследования астероида Веста и карликовой планеты Цереры .
«Dawn» стал первой миссией по исследованию с орбиты более одного небесного тела, первым аппаратом, работавшим на орбите астероида главного пояса (с 2011 по 2012 год) и первым на орбите карликовой планеты (с 2015 года по настоящее время) .
Общее руководство проектом осуществляет Лаборатория реактивного движения . Контракт на разработку и изготовление аппарата был заключен с компанией Orbital Sciences Corporation ( Даллас , Вирджиния , США), где за него отвечал менеджер проекта Майкл Мук (Michael Mook). За научную программу миссии отвечает Калифорнийский университет в Лос-Анджелесе (научный руководитель проекта — ), партнерами которого являются Лос-Аламосская национальная лаборатория , ( Катленбург-Линдау , Германия), Институт планетных исследований Германского центра авиации и космонавтики (DLR) ( Берлин ), Институт инженерии компьютеров и коммуникационных сетей Брауншвейгского технического университета , ( Рим ) и Итальянское космическое агентство ; ракету-носитель поставила компания United Launch Alliance ( Денвер , Колорадо ) .
Стоимость миссии составляет $ 373 млн на построение и запуск аппарата, затем к 2015 году — $ 99 млн на последующее сопровождение — работу и анализ данных .
В настоящее время аппарат находится на бесконтрольной орбите Цереры, на которой продержится по крайней мере до середины XXI века .
Название АМС — англ. «Рассвет», «Заря» — не связано с какой-то конкретной личностью, а является простым образом, характеризующим основную цель — получение информации, которая поможет лучше изучить ранние этапы формирования Солнечной системы . Веста и Церера — наиболее массивные астероиды , практически полностью уцелевшие в процессе всей эволюции Солнечной системы и поэтому сохранившие свидетельства о физико-химических условиях «на заре» образования нашей планетной системы. При этом Веста и Церера, хотя и сформировались и эволюционировали так близко друг от друга, представляют собой противоположные типы больших астероидов: Веста — безводный ахондрит , претерпевший на ранних этапах дифференциацию и расплавление ядра и основной части мантии , тогда как Церера содержит огромное количество льда, значительно замедлившего термические процессы в ней. Таким образом, миссия Dawn по изучению этих астероидов связывает исследование каменных тел внутренней Солнечной системы и ледяных во внешней части . Она состоит в достижении следующих целей :
Для этого должны быть выполнены следующие задачи :
АМС «Dawn» сделана компанией Orbital Sciences на базе платформы , созданной для малых геостационарных спутников связи . В основе конструкции станции — цилиндр из графитового композитного материала . Внутри него расположены баки для рабочего тела двигателей — ксенона в виде газа для ионных двигателей и гидразина для обычных. Снаружи цилиндра крепятся панели из алюминия с алюминиевым покрытием, на которых установлена бо́льшая часть остального оборудования. На одной из сторон корпуса установлена главная антенна, на двух других — приводы солнечных батарей . Панель быстрого доступа и другие панели состоят из алюминия и имеют алюминиевое или композитное покрытие. Температура аппарата поддерживается с помощью термоизоляционных экранов, радиаторов на поверхности корпуса, его полированного покрытия, а также более 140 электронагревательных элементов .
На борту Dawn установлена кремниевая пластина размером 8×8 мм, на которую нанесены имена 365 000 жителей Земли, подавших соответствующую заявку .
АМС оборудована тремя ксеноновыми ионными двигателями производства компании L-3 Communications , разработанными на основе образца, испытанного на зонде « Deep Space 1 ». Они установлены в нижней части аппарата: один вдоль оси, ещё два — на передней и задней панелях.
Принцип работы — ускорение в электрическом поле ионов ксенона (до скорости, почти в 10 раз большей, чем в обычных химических двигателях). Каждый двигатель размером 33 см (длина) на 30 см (диаметр сопла) и массой 8,9 кг имеет тягу 19—92 мН и удельный импульс 3200—1900 с . Ускорение и торможение обеспечиваются за счёт регулирования электрической мощности (от 0,5 до 2,6 кВт, которые подаются непосредственно от солнечных батарей при напряжении от 80 до 160 В) и скорости расхода рабочего тела. Движение осуществляется посредством работы одного из трёх двигателей. При нормальной работе ионные двигатели «Dawn» обеспечивают прирост в скорости на примерно 100 км/ч за 4 суток. Штатный режим разгона КА — недельный с перерывом на несколько часов для «общения» с Землей. Суммарная расчетная продолжительность работы трех двигателей — примерно 2000 суток, в том числе 1885 суток до прибытия на орбиту Цереры . В действительности общее время полёта АМС с включенной тягой достигло 5,9 года (54% полётного времени от запуска до последнего выключения двигателя). Приращение скорости АМС, обеспеченное ионными двигателями, составило 11,4 км/с, что является рекордом, в 2,7 раза превосходящим предыдущее рекордное достижение .
Ксенон был выбран в качестве рабочего тела ионных двигателей, потому что он химически инертен, легко хранится в сжатом виде и имеет достаточно большую атомную массу, чтобы обеспечивать бо́льшую тягу по сравнению с другими веществами. Рабочее тело расходуется экономично — 3,25 мг за секунду (или около 10 унций (280 г) в сутки) при максимальной интенсивности работы. В момент запуска ксенон в газообразной форме хранился в баллоне под давлением при плотности, в 1,5 раза большей плотности воды. Из 425 кг рабочего тела (ксенона), имеющегося на борту, на полёт Земля — Веста предполагалось израсходовать 275 кг, на полёт Веста — Церера — 110 кг .
Наименование | Внешний вид | Назначение | Описание | Разработчик |
---|---|---|---|---|
Кадровый фотоаппарат ( англ. Framing camera (FC) ) | Получение подробных оптических изображений, а также навигация при подлёте к целям | На зонде установлены две (отдельно размещённые) камеры, каждая со своим комплектом оптики и электроники, и при съёмке используется одна из них — основная либо резервная. Каждая камера оснащена чёрно-белой ПЗС-матрицей (1024×1024 пикселя ), объективом с диаметром 19 мм, относительным отверстием f /7,9 и фокусным расстоянием 150 мм, набором из 7 узкополосных (6 с полушириной 40 нм и 1 с полушириной 80 нм; самый широкий — от 450 до 920 нм) цветных фильтров + пустым полем; имеет поле зрения 5,5×5,5 градусов; время выдержки может быть установлено от 0,001 с до 3,5 часа. Помимо видимого света, камеры способны регистрировать волны в ближнем ИК-диапазоне. Они также имеют собственную систему оцифровки и внутреннюю память объёмом 8 Гб . |
Камеры были созданы при участии Института планетных исследований Германского центра авиации и космонавтики (DLR) и Института инженерии компьютеров и коммуникационных сетей Брауншвейгского технического университета ; находится в ведении Германского центра авиации и космонавтики (DLR) и Института исследований Солнечной системы Общества Макса Планка |
|
Детектор нейтронов и гамма-квантов ( англ. Gamma Ray and NeutronDetector (GRaND) ) | Определение химического состава поверхностного слоя Весты и Цереры глубиной до 1 м. | Конструкция основана на устройстве гамма-спектрометра и нейтронного спектрометра на борту АМС « Lunar Prospector », также запущенной в рамках программы Discovery, и гамма-лучевого спектрометра, установленного на аппарате « Mars Odyssey ». Прибор оснащён 21 датчиком (в 4 главных каналах) для регистрации энергий гамма-лучей и нейтронов, отражённых от поверхности исследуемого тела либо испускаемых ею, причём этот сигнал отделяется от фонового. Фотоэлектронный умножитель регистрирует сцинтилляции , вызванные взаимодействием γ-лучей с кристаллом , а также создание ими свободных носителей заряда в полупроводниковом кристалле . и быстрые нейтроны детектируются по их взаимодействию со сцинтилляторами из борированной пластмассы; образующиеся там гамма-лучи регистрируются кристаллами BGO и CdZnTe. Сцинтилляторы оптически связаны с фотоумножителями для обеспечения возможности регистрации низкоэнергетических фотонов. Те же фотоумножители, связанные со сцинтилляторами из литированного стекла, служат для регистрации тепловых нейтронов . GRaND имеет очень широкую зону обзора , но чувствительность не везде одинакова, полуширина минимально разрешимого участка поверхности составляет порядка полутора расстояний, равных высоте съёмки. Однако зная расположение геологических объектов, определённое другими приборами, можно получить пространственное распределение химических элементов с разрешением, в 3 раза лучшим собственного разрешения детектора нейтронов и гамма-квантов . В отличие от других инструментов, в детекторе нет собственного внутреннего устройства хранения данных. |
Инструмент изготовлен Лос-Аламосской национальной лабораторией , а отвечает за него рабочая группа в Планетологическом институте США . |
|
Спектрометр видимого и инфракрасного диапазонов ( англ. Visible and Infrared Mapping Spectrometer (VIR) ) | Минералогический анализ поверхности Весты и Цереры | Прибор является модификацией спектрометров, применявшихся на космических зондах « Розетта » и « Венера-экспресс », а также унаследовал ряд элементов конструкции от аналогичного инструмента на борту аппарата « Кассини ». Инструмент регистрирует интенсивность освещения каждого пикселя ПЗС-матрицы для длин волн 0,25—1 мкм, либо массива фотодиодов HgCdTe при температуре 70 К для длин волн 0,95—5 мкм — всего 400 различных длин волн в видимом и инфракрасном диапазоне — затем из сравнения получаемой картины с известными данными лабораторных исследований можно делать выводы о минералогическом составе поверхности Весты и Цереры. Спектрометр имеет длину щели 64 мрад, объем встроенной памяти — 6 Гб, которые могут использоваться как 2 Гб резервного хранилища данных. |
Прибор был создан , дочерней фирмой холдинга Leonardo на средства Итальянского космического агентства под научным руководством , в ведении которого и находится его работа . |
Помимо специальных инструментов, радиокомплекс аппарата должен использоваться для изучения гравитационного поля Весты и Цереры. Принимая с помощью антенн на Земле сигналы с зонда (постоянно отслеживая скорость КА и регистрируя радиозатмения), можно наблюдать небольшие вариации в гравитационном поле, дающие информацию о распределении масс внутри изучаемых тел, на основании которого можно, в свою очередь, делать выводы об их внутренней структуре . За гравитационный эксперимент отвечает сама Лаборатория реактивного движения NASA .
Электрическая силовая установка обеспечивает электропитанием все системы на борту аппарата, в том числе ионный двигатель в периоды его активной работы, а также системы терморегулирования. Каждая из двух 5-секционных солнечных батарей размером 8,3 на 2,3 м и массой 63 кг покрыта 5740 фотоячейками из InGaP/InGaAs/Ge, преобразующими около 28 % падающего на них солнечного излучения в электричество. На Земле они вместе генерировали бы более 10 кВт, а на расстоянии 3 а. е. от Солнца максимальная мощность составляет 1,3 кВт. Панели установлены с противоположных сторон зонда с помощью карданова подвеса системы, позволяющей ориентировать их перпендикулярно солнечному потоку. Никель-водородная батарея на 35 ампер-часов и комплект зарядной электроники обеспечивают непрерывное питание, даже когда панели не улавливают солнечное излучение .
В обычном режиме движения система ориентации определяет положение станции с помощью двух звёздных датчиков и 16 солнечных грубых датчиков, в отдельных режимах работы дополнительно используются 3 гироскопа. Ориентация аппарата, в особенности солнечных батарей на Солнце, может осуществляться с помощью реактивной системы управления и четырёх , причём оба способа могут применяться в сочетании с ионным двигателем в режиме его активной работы. Реактивная система управления представляет собой 12 микро- ЖРД MR-103G тягой по 0,9 Н на гидразиновом монотопливе и может использоваться как для непосредственного контроля ориентации, так и для разгрузки маховиков. Эта же система отвечает за слежение солнечными батареями за Солнцем и за поворот в кардановом подвесе ионных двигателей (чтобы по мере опустошения баков вектор тяги проходил через центр масс КА) . Кроме того, некоторое количество гидразина предусмотрено для манёвров по корректировке орбиты, если в режиме малой тяги ионного двигателя требуется достаточно быстро набрать необходимое изменение скорости .
Бортовая система управления данными построена на базе процессора RAD6000 , используется программное обеспечение на языке C под управлением ОС VxWorks . Управляющий модуль включает также 8 Гбайт памяти для хранения инженерных и научных данных. Система получает данные телеметрии от всех датчиков системы ориентации и отправляет команды на её приводы благодаря установленным драйверам для них .
Бортовая кабельная сеть КА состоит из примерно 9000 проводов общей длиной порядка 25 км, причем масса кабелей вместе с разъемами достигает 83 кг .
Телекоммуникация с Землёй производится в X-диапазоне с помощью , также успешно зарекомендовавшего себя в работе на зонде Deep Space 1 и использовавшегося на большинстве миссий NASA за пределы орбиты Луны, начиная с « Марс Одиссей ». 100-ваттные усилители на лампе бегущей волны аналогичны установленным на аппарате « Mars Reconnaissance Orbiter ». Передача данных осуществляется в основном с помощью параболической антенны с высоким коэффициентом усиления диаметром 1,52 м, либо, когда она не направлена в сторону Земли, — одной из трёх антенн с низким коэффициентом усиления. Скорость передачи — от 10 б/с до 124 кб/с, приёма (с Земли) — от 7,8 б/с до 2 кб/с .
План полёта, рассчитанный на 8 лет, предусматривает расходящуюся спиральную траекторию, описывающую три оборота вокруг Солнца .
По первоначальному плану на орбите около Весты аппарат должен был находиться до мая 2012 года, но этот срок был продлён до августа, с целью более полного картографирования некоторых областей, остававшихся в тени. Это не повлияло на сроки прибытия к Церере.
1 июля 2016 года руководство НАСА приняло решение оставить зонд на орбите Цереры, хотя руководство миссии Dawn предполагало использовать остатки топлива космического аппарата для полёта к астероиду (145) Адеона . 19 октября 2017 года расширенная миссия была снова продлена до второй половины 2018 года, когда будет исчерпан ресурс топлива .
АМС «Dawn», девятая миссия в рамках программы Discovery , была принята НАСА в ноябре 2002 года .
Миссия как минимум трижды замораживалась или вовсе отменялась (2003, 2005, 2006 гг.). Однако после последнего публичного заявления об отказе от полёта к Церере в марте 2006 года это решение было официально отменено, и 27 марта 2006 года «Dawn» получил добро на запуск. В сентябре 2006 года АМС уже была в состоянии готовности к запуску. 10 апреля 2007 года спутник доставили в монтажный цех подрядчика по запуску, во Флориде . Запуск изначально был запланирован на 20 июня, но затем откладывался до 30 июня и 7 июля из-за неготовности ракеты, а потом до 15 июля из-за проблем с самолетными и морскими измерительными пунктами для сопровождения запуска; он мог быть выполнен до 19 июля, так как только до этой даты существовали условия для встречи с Марсом. Однако 7 июля было объявлено о переносе запуска на осень, до следующего астрономического окна — чтобы избежать наложения во времени пуска и первых фаз полёта «Dawn» и АМС « Феникс » (пуск которой состоялся 4 августа 2007 года). Из-за аппарата «Феникс» пришлось и частично разобрать ракету для запуска «Dawn», чтобы минимизировать риск при возможных проблемах с пусковой установкой «Феникса» в непосредственной близости.
Наконец, 11 сентября 2007 года 3-я ступень ракеты-носителя с АМС на ней были вновь доставлены на стартовый комплекс 17-В космодрома на мысе Канаверал . Запуск аппарата был выполнен 27 сентября 2007 года . После почти трёх месяцев испытаний бортовых систем на земной орбите , 17 декабря 2007 года «Dawn» отправился к Марсу , орбиту которого аппарат достиг 17 февраля . Выполнив гравитационный манёвр вокруг планеты , аппарат устремился к поясу астероидов.
3 мая 2011 года зонд сделал первую фотографию Весты с расстояния около 1,21 млн км , начался этап активного изучения астероида . В течение мая была выполнена серия навигационных снимков астероида с расстояния около 640 тыс. — 1 млн км .
К 27 июня аппарат снижает скорость, всё ближе приближаясь к Весте . 16 июля, совершив почти два оборота вокруг Солнца , «Dawn» достиг Весты и перешёл на её круговую орбиту с высотой 16 000 км . Весь июль аппарат занимался съёмкой поверхности Весты .
11 августа начался основной этап исследований и сбора информации ( Survey ) с помощью всех трёх инструментов с орбиты высотой 2700 км, куда Dawn успешно перешёл 2 августа . К 31 августа было получено более 2800 снимков и более 3 млн спектров в видимом и ИК-диапазонах, что намного превысило намеченный план .
18 сентября аппарат спустился ещё ниже — до орбиты 680 км — «Высокой картографической орбиты», High altitude mapping orbit , сокр. HAMO . 29 сентября начался второй этап работы (самый интенсивный) на орбите HAMO в течение 30 дней, за которые должно быть совершено порядка 60 оборотов — 6 циклов съёмки под разными углами по 10 оборотов, в ходе которого было выполнено подробное картографирование поверхности с целью изучения геологических процессов на астероиде, а также исследование его гравитационного поля . Камерой Dawn сделано более 7000 фотографий, составивших основу фотоархива Весты по охвату и по детальности; VIR-спектрометром снято более 15000 кадров, которые позволили построить подробную геологическую карту астероида; детектор GRaND также начал собирать данные.
8 декабря аппарат перешел на «Низкую картографическую орбиту», Low altitude mapping orbit , сокр. LAMO высотой 210 км .
Основная исследовательская программа Dawn была выполнена, 18 апреля она была продлена до 26 августа. Зонд остался на низкой орбите для сбора дополнительных данных о составе поверхности и гравитационном поле, затем перейдёт на более высокую (680 км) для более подробного исследования северного полушария, не освещенного Солнцем ранее. 5 июня аппарат завершил переход на орбиту 680 км с 12-часовым периодом обращения . Завершив расширенную программу (получено в общей сложности 31 тыс. фото обычной камерой и 20 млн спектров в видимом и ИК-диапазонах), 5 сентября 2012 года аппарат покинул орбиту Весты и направился к следующему объекту исследований — Церере , переход к которому занял два с половиной года.
13 января с расстояния 383 тыс. км получено изображение Цереры размером 27 пикселей. На снимках различимы элементы структуры поверхности, такие как кратеры . С этого момента начинается получение снимков приближающейся Цереры . .
Кодовое название | Время работы | Высота над поверхностью, км | Период обращения | Разрешение при съёмке, м/пиксель |
---|---|---|---|---|
RC3 | 23.04.15 – 09.05.15 | 13 600 | 15 дней | 1,300 |
Survey | 06.06.15 – 30.06.15 | 4 400 | 3,1 дня | 410 |
HAMO | 17.08.15 – 23.10.15 | 1 470 | 19 часов | 140 |
LAMO/XMO1 | 16.12.15 – 02.09.16 | 385 | 5.4 часа | 35 |
XMO2 | 16.10.16 – 04.11.16 | 1 480 | 19 часов | 140 |
XMO3 | 05.12.16 – 22.02.17 | 7 520 - 9 350 | ~ 8 дней | ~700 |
XMO4 | 17.04.17 – | 13 830 - 52 800 | 59 дней |
6 марта 2015 года, преодолев в общей сложности 4,9 млрд км, аппарат захвачен гравитационным полем карликовой планеты на расстоянии 60 600 км от неё .
23 апреля 2015 «Dawn» успешно перешёл на круговую научную орбиту RC3 в 13,6 тысячи километров, сделаны новые снимки карликовой планеты
6 и 9 июня 2015 были получены первые фотографии со второй научной орбиты (4400 км). Наибольший интерес по-прежнему вызывают яркие области внутри кратера диаметром 90 км — различимо большое пятно диаметром порядка 9 км и как минимум 8 пятен меньшего размера рядом с ним (помимо льда, обнаружены выходы гидрогалита , что стало подтверждением наличия океана на Церере, как минимум, в недавнем прошлом ); а также кратеры — наблюдается большое число имеющих углубления в центре. Кроме того, можно видеть гору высотой порядка 5 км и множество кратеров с центральными пиками, — эти и другие элементы дают информацию о процессах на поверхности карликовой планеты в прошлом (есть свидетельства геологической активности) и её внутреннем строении .
С 17 августа 2015 аппарат перешел на третью научную орбиту 1470 км для картографирования поверхности Цереры и изучения внутреннего распределения массы Цереры с помощью радиоволн 19 августа получены изображения поверхности Цереры с третьей научной орбиты разрешением 140 м/пиксель (что почти в 3 раза лучше, чем на предыдущей орбите) — гора в южном полушарии высотой 6 км . 9 сентября — подробные снимки кратера, в котором находятся яркие пятна, получившего название Оккатор
8 декабря 2015 зонд закончил снижение до высоты 385 км . После небольшой плановой корректировки траектории 11—13 декабря на четвёртой орбите намечены подробная съёмка (разрешением 35 м/пиксель) деталей поверхности, в особенности кратера Оккатор; изучение гамма-лучей и потоков нейтронов для определения содержания определённых химических элементов; анализ содержания различных минералов с помощью VIR- спектрометра, а также исследования гравитационного поля в течение последующих трёх месяцев — приблизительно до мая 2016 года. Чтобы максимально продлить срок работы аппарата, инженеры попытаются перевести систему ориентации на гибридный режим с использованием двух оставшихся маховиков . 10 декабря 2015 выполнены первые фотографии поверхности ( цепочки Гербер), сделанные резервной камерой в целях её тестирования. Подобные комплексные структуры на поверхности Цереры представляют особый интерес, так как свидетельствуют о сложной структуре поверхности, присущей телам большего размера, таким как Марс Первую половину 2016 года аппарат производит съемку поверхности астероида.
30 июня 2016 года аппарат завершил основную миссию, за время которой в общей сложности он пролетел 5,6 млрд км, совершил 2450 оборотов вокруг Весты и Цереры, отправил на Землю 69 000 отснятых изображений этих двух тел, а ионный двигатель работал 48 000 часов .
6 июля 2016 в NASA принята программа расширенной миссии. Теоретически аппарат мог быть направлен к одному из более чем 65 000 известных объектов, однако наиболее перспективным могло бы быть исследование одного из астероидов семейства Адеоны , при этом топливо расходовалось бы даже ещё более экономично. Тем не менее, после оценки всех факторов принято решение оставить «Dawn» на орбите Цереры для дальнейшего её изучения .
19 октября 2017 года расширенная миссия по исследованию Цереры во второй раз продлена до второй половины 2018 года .
1 ноября 2018 года аппарат, переведённый на стабильную орбиту, исчерпал все запасы топлива для маневрирования и ориентации. Миссия «Dawn», длившаяся 11 лет, была официально завершена . На финальной орбите неуправляемая АМС продержится ещё как минимум 20 лет, а с 90 % вероятности — не менее 50 лет .
Данные, полученные «Dawn», выявили чрезвычайно разнообразную морфологию поверхности Весты: обнаружены впадины, хребты, утесы, холмы и очень большая гора. Зарегистрирована сильная дихотомия, то есть принципиальная разница между северным и южным полушариями. Северное старше и сильнее изрыто кратерами, тогда как южное более яркое и гладкое, имеет базальтовую литологию и как минимум вдвое моложе северного: его возраст оценивается в 1-2 млрд лет, тогда как у самых старых элементов рельефа Севера — ненамного меньше 4 млрд лет . Аномальные тёмные пятна и полосы на поверхности соответствуют тёмным включениям, обнаруженным в метеоритах с Весты и имеющим своим происхождением, скорее всего, импактные события в древности . Детальный минералогический анализ поверхности доказал эквивалентность с составом метеоритов типа , что подтверждает теорию о формировании коры путём расплавления хондритного . Таким образом, окончательно подтверждено, что именно Веста является источником HED-метеоритов (то есть одним из крупнейших единственных источников метеоритов на Земле), причём установлены и соответствующие участки поверхности — огромные ударные бассейны Реясильвия и Вененейя вблизи южного полюса . Прояснение их возраста (они оказались неожиданно молодыми) позволило, в свою очередь, уточнить теорию эволюции Солнечной системы в целом, в особенности этапа поздней тяжёлой бомбардировки . А «Dawn» стал таким образом первым КА, исследовавшим источник метеоритов после их идентификации на Земле .
На основании измерений массы, формы, объёма и вращательных параметров Весты с помощью фотосъёмки и радиозондирования уточнены размеры Весты , а также получено точное распределение гравитационного поля, свидетельствующее о ранней дифференциации . Данные зонда помогли учёным восстановить картину формирования и эволюции астероида, в частности, образования 4,56 млрд лет назад крупного (средним радиусом от 107 до 113 км ) железного ядра, подобно тому, как это происходило у планет земной группы и Луны. Однако другие тела, имевшие на этом этапе эволюции Солнечной системы, были поглощены этими планетами, но с Вестой этого не произошло, что делает её в этом плане уникальной .
Наконец, с прибытием «Dawn» для Весты пришлось разработать новую систему координат, поскольку оказалось, что предыдущая, основанная на данных наблюдений телескопов, имела ошибку почти в 10° .
Далее, данные КА позволили уточнить в сторону уменьшения массу и размер Цереры: её экваториальный диаметр составляет 963 км, полярный диаметр — 891 км, масса — 9,393⋅10 20 кг . Была составлена гравитационная карта Цереры и получено множество детальных снимков ее поверхности. Кроме того, исследователи нашли на Церере « », пригодные для удержания водяного льда в течение долгого времени, ледяной вулкан , следы органических веществ, необычные горы, исчезнувшие кратеры, ледники и оползни, а также загадочные , состав которых долгое время не удавалось установить .
К моменту завершения основной миссии аппарат преодолел в общей сложности 5,6 млрд км, совершив 2450 оборотов по орбитам вокруг Весты и Цереры. За это время им собрано 132 Гб данных, в частности, отснято 69 000 изображений .