Моделирование данных
- 1 year ago
- 0
- 0
Байесовское иерархическое моделирование — это статистическая модель , записанная в виде нескольких уровней (в иерархическом виде), которая оценивает апостериорного распределения используя байесовский метод . Подмодели комбинируются в иерархическую модель и используется теорема Байеса для объединения их с наблюдаемыми данными и учёта всех присутствующих неопределённостей. Результатом этого объединения является апостериорное распределение, известное также как уточнённая оценка вероятности после того, как получены дополнительные сведения об априорной вероятности .
, наиболее популярное , может дать заключение по внешнему виду несовместимое с заключением, которое даёт байесовская статистика, поскольку байесовский подход трактует параметры как случайные величины и использует субъективную информацию для установления допущений на эти параметры . Так как подходы отвечают на разные вопросы, формальные результаты технически не являются противоречивыми, но два подхода расходятся во мнении, какой ответ относится к конкретным приложениям. Приверженцы байесовского подхода утверждают, что относящаяся к принятию решения информация и обновление уверенностей нельзя игнорировать и что иерархическое моделирование имеет потенциал взять верх над классическими методами в приложениях, где респондент даёт несколько вариантов данных наблюдений. Более того доказано, что модель робастна с меньшей чувствительностью апостериорного распределения к изменчивым иерархическим априорным данным.
Иерархическое моделирование используется, когда информация доступна в нескольких различных уровнях наблюдаемых величин. Иерархический вид анализа и представления помогают в понимании многопараметрических задач и играют важную роль в разработке вычислительных стратегий .
Многочисленные статистические приложения используют несколько параметров, которые можно считать как зависимые или связанные таким образом, что задача предполагает зависимость модели совместной вероятности этих параметров .
Индивидуальные степени уверенности, выраженные в форме вероятностей, имеют свою неопределённость . Кроме того, возможны изменения степени уверенности со времени. Как утверждали профессор Жозе М. Бернардо и профессор Адриан Ф. Смит, «Актуальность процесса обучения состоит в эволюции индивидуальной и субъективной уверенности о реальности». Эти субъективные вероятности привлекаются в разум более непосредственно, чем физические вероятности . Следовательно, это требует обновления уверенности, и сторонники байесовского подхода сформулировали альтернативную статистическую модель, которая принимает во внимание априорные случаи конкретного события .
Предполагаемое получение реального события обычно изменяет предпочтения между определёнными вариантами. Это делается путём изменения степени доверия к событиям, определяющим варианты .
Предположим, что при изучении эффективности сердечной терапии пациентов в госпитале j , имеющих вероятность выживания , вероятность выживания обновляется при событии y , заключающемся в создании гипотетической сомнительной сыворотки, которая, как думают некоторые, увеличивает выживание больных с сердечными проблемами.
Чтобы сделать обновлённые утверждения о вероятности , задающее возникновение события y , мы должны начать с модели, обеспечивающей совместное распределение вероятностей для и y . Это может быть записано как произведение двух распределений, которые часто упоминаются как априорная вероятность и выборочное распределение соответственно:
Если использовать основное свойство условной вероятности , апостериорное распределение даст:
Равенство, показывающее связь между условной вероятностью и индивидуальными событиями, известно как теорема Байеса. Это простое выражение воплощает техническое ядро байесовского вывода, которое нацелено на включение обновлённого доверия в уместном и разрешимом виде .
Обычной стартовой точкой статистического анализа является предположение, что n значений перестановочны. Если никакой информации, отличной от данных y , недоступно для различения любого от любого другого и никакого упорядочения или группировки параметров нельзя сделать, следует предполагать симметрию параметров относительно их априорной вероятности . Эта симметрия представлена вероятностной перестановочностью. Обычно полезно и приемлемо моделировать данные из перестановочного распределения как независимые и одинаково распределённые , если дан некоторый неизвестный вектор параметров с распределением .
Для фиксированного числа n набор перестановочен, если совместное распределение инвариантно относительно перестановок индексов. То есть, для любой перестановки or индексов (1, 2, …, n ),
Ниже приведён пример перестановочной, но не независимой и одинаково распределённой последовательности: Рассмотрим урну с красными и синими шарами с вероятностями вытаскивания шаров. Шары вытаскиваются без возврата в урну, то есть, после вытаскивания одного из n шаров в урне остаётся n − 1 шаров для следующего вытаскивания.
Пусть | если -й шар красный |
иначе. |
Поскольку вероятность вытаскивания красного шара при первом вытаскивании и синего шара при втором вытаскивании равна вероятности вытаскивания синего шара при первом вытаскивании и красного при втором, которые обе равны 1/2 (то есть ), то и перестановочны.
Однако вероятность выбора красного шара при втором вытаскивании уже не будет равна 1/2. Таким образом, и не независимы.
Если независимы и одинаково распределены, то они перестановочны, но обратное не обязательно верно .
Бесконечная перестановочность — это такое свойство, что любое конечное подмножество бесконечной последовательности , перестановочно. То есть, для любого n последовательность перестановочна .
Байесовское иерархическое моделирование использует две важные концепции для получения апостериорного распределениея , а именно:
Предположим, что случайная величина Y имеет нормальное распределение с параметром θ как среднее и параметром 1 в качестве дисперсии , то есть . Предположим, что параметр имеет распределение, задаваемое нормальным распределением со средним и дисперсией 1, то есть . Кроме того, является другим распределением, заданным, например, стандартным нормальным распределением . Параметр называется гиперпараметром, в то время как его распределение, заданное как , является примером гиперприорного распределения. Обозначение для Y изменяется с добавлением другого параметра, то есть . Если имеется другой уровень, скажем, является другим нормальным распределением со средним и дисперсией , что означает , то и могут также быть названы гиперпараметрами, а их распределения являются гиперприорными распределениями .
Пусть будут наблюдениями и будет параметром, который управляет процессом генерации . Предположим далее, что параметры порождаются перестановочными из основной популяции с распределением, управляемым гиперпараметром .
Байесовская иерархическая модель содержит следующие уровни:
Правдоподобие, как видно из уровня I, равно , c в качестве его априорного распределения. Заметим, что правдоподобие зависит только от через .
Априорное распределение из уровня I может быть разбито на:
где является гиперпараметром с гиперприорным распределением .
Тогда апостериорное распределение пропорционально этой величине:
Для иллюстрации рассмотрим пример: Учитель хочет оценить, насколько хорошо студент выполнил свой SAT тест ( англ. Scholastic Assessment Test ). Он использует информацию о студенте в старших классах и его текущем среднем балле оценок ( англ. grade point average , GPA), чтобы получить оценку. Текущая GPA, обозначим её , имеет правдоподобие, задаваемое некоторой функцией вероятности с параметром , то есть . Этот параметр является баллом SAT студента. Балл SAT рассматривается как элемент выборки, полученный из общей выборки, полученной из распределения общей популяции, индексированной другим параметром , которая является баллом студента в старших классах школы . То есть, . Более того, гиперпараметр имеет своё собственное распределение с функцией , которое называется гиперприорным распределением.
Чтобы получить балл SAT по информации о GPA,
Вся информация в задаче будет использована для получения апостериорного распределения. Вместо решения с использованием только априорной вероятности и функции правдоподобия, использование гиперприорных распределений даёт больше информации, что приводит к большей уверенности в поведении параметра .
В общем случае интересующее нас совместное апостериорное распределение 2-уровневых иерархических моделей равно:
Для 3-уровневых иерархических моделей апостериорное распределение задаётся так: