Interested Article - Геометрическая прогрессия

Геометри́ческая прогре́ссия — последовательность чисел , , , ( члены прогрессии), в которой первый член отличен от нуля, а каждый из последующих членов, начиная со второго, получается из предыдущего члена умножением его на ненулевое фиксированное число для данной последовательности ( знаменатель прогрессии). При этом .

Геометрическая прогрессия называется бесконечно убывающей , если знаменатель прогрессии по абсолютной величине меньше единицы.

Произведением первых членов геометрической прогрессии называется произведение от до , то есть выражение вида Обозначение: .

Описание

Любой член геометрической прогрессии может быть вычислен по формуле

Если каждый член геометрической прогрессии больше предыдущего, то прогрессия называется возрастающей ; если меньше предыдущего, то убывающей .


Геометрическая прогрессия возрастает , если выполняется один из наборов условий:

и

или

и .

Геометрическая прогрессия убывает , если выполняется один из наборов условий:

и

или

и .

При знакочередующейся , при стационарной (постоянной).

Своё название прогрессия получила по своему характеристическому свойству :

то есть модуль любого члена геометрической прогрессии, кроме первого, равен среднему геометрическому (среднему пропорциональному) двух рядом с ним стоящих членов .

Однако это не только свойство, но и признак геометрической прогрессии , формулировка которого звучит следующим образом:

Последовательность положительных чисел тогда и только тогда является геометрической прогрессией, когда каждый её член, начиная со второго, есть среднее геометрическое предшествующего и последующего членов.

Данный признак можно расширить на другие случаи. Если её члены отрицательны, получим , где .

Если знаки членов прогрессии чередуются, получим , где либо и .

Графическая интерпретация

Если на координатной плоскости нанести точки с координатами , где — номер (натуральное число), а -й член некоторой геометрической прогрессии, у которой , то все точки будут принадлежать графику функции:

где — это знаменатель геометрической прогрессии, а — её первый член . Это означает, что справедлива теорема:

Для того чтобы последовательность являлась геометрической прогрессией при , необходимо и достаточно, чтобы являлась показательной функцией (от ), заданной на множестве натуральных чисел.

Примеры

Получение новых квадратов путём соединения середин сторон предыдущих квадратов
  • Последовательность площадей квадратов , где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата :8—9 .
  • Геометрической является последовательность количества зёрен на клетках в задаче о зёрнах на шахматной доске .
  • 2 , 4 , 8 , 16 , 32 , 64 , 128, 256, 512, 1024 , 2048, 4096, 8192 — геометрическая прогрессия со знаменателем 2 из тринадцати членов.
  • 50; 25; 12,5; 6,25; 3,125; … — бесконечно убывающая геометрическая прогрессия со знаменателем 1/2.
  • 4; 6; 9 — геометрическая прогрессия из трёх элементов со знаменателем 3/2.
  • , , , — стационарная геометрическая прогрессия со знаменателем 1 (и стационарная арифметическая прогрессия с разностью 0).
  • 3; −6; 12; −24; 48; … — знакочередующаяся геометрическая прогрессия со знаменателем −2.
  • 1; −1; 1; −1; 1; … — знакочередующаяся геометрическая прогрессия со знаменателем −1.

Свойства

Свойства знаменателя геометрической прогрессии

Знаменатель геометрической прогрессии можно найти по формулам:

Свойства членов геометрической прогрессии

  • Рекуррентное соотношение для геометрической прогрессии:
  • Формула общего ( -го) члена:
  • Обобщённая формула общего члена:
  • , если .
  • , если .

Пусть — соответственно -й, -й, -й члены геометрической прогрессии, где . Тогда для всякой такой тройки выполняется комплементарное свойство геометрической прогрессии, называемое тождеством геометрической прогрессии :

  • Произведение первых членов геометрической прогрессии можно рассчитать по формуле
  • Произведение членов геометрической прогрессии начиная с k -го члена, и заканчивая n -м членом, можно рассчитать по формуле
  • Сумма первых членов геометрической прогрессии
  • Суммой бесконечно убывающей геометрической прогрессии называется число, к которому сумма первых членов бесконечно убывающей геометрической прогрессии стремится к неограниченно приближается с ростом . Сумма всех членов убывающей прогрессии:
, то при , и
при .

Свойства суммы геометрической прогрессии

где — сумма обратных величин, то есть .

Свойства произведения геометрической прогрессии

  • , где — сумма обратных величин, то есть .

См. также

Примечания

  1. от 12 октября 2011 на Wayback Machine на mathematics.ru
  2. Это название, хотя и является общепринятым, неудачно, так как бесконечно убывающая геометрическая прогрессия является убывающей , только если и первый член, и знаменатель прогрессии положительны .
  3. Е. В. Якушева, А. В. Попов, О. Ю. Черкасов, А. Г. Якушев. Геометрическая прогрессия и её свойства // Экзаменационные вопросы и ответы. Алгебра и начала анализа. 9 и 11 выпускные классы: учебное пособие : книга. — М. : АСТ-ПРЕСС ШКОЛА, 2004. — С. 48. — 416 с. — 8000 экз. ББК 22.12я72 . — УДК . — ISBN 5-94776-013-4 .
  4. Геометрическая прогрессия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  5. Если геометрическая прогрессия является конечной последовательностью, то её последний член таким свойством не обладает .
  6. Роу С. . — 2-е изд. — Одесса: Mathesis, 1923. 19 мая 2017 года.
Источник —

Same as Геометрическая прогрессия