Interested Article - Критерий оптимальности
- 2020-12-08
- 1
Критерий оптимальности (критерий оптимизации) — характерный показатель решения задачи, по значению которого оценивается оптимальность найденного решения, то есть максимальное удовлетворение поставленным требованиям. В одной задаче может быть установлено несколько критериев оптимальности.
Оптимизационные задачи
Оптимизация — процесс нахождения наилучшего или оптимального решения какой-либо задачи (набора параметров ) при заданных критериях. Характеризуя объект, сложно выбрать такой один критерий, который бы обеспечил всю полноту требований. А стремление к всеобъемлющему решению и назначение большого числа критериев сильно усложняет задачу. Поэтому в разных задачах количество критериев может быть различным. Задачи однокритериальной оптимизации (с одним критерием оптимизации) иногда называют скалярными , а многокритериальной — векторной оптимизацией . Кроме того, количество параметров, характеризующих оптимизируемый объект (задачу), также может быть различным, причём параметры могут меняться непрерывно или дискретно ( дискретная оптимизация).
В предельном случае решение практических задач можно свести к задаче двухкритериальной оптимизации, критериями в которой являются «цена» и «качество» (т. н. «цена-качество»). Это наглядно позволяет учесть и экономические (цена), и производственно-технические ( качество продукции ) требования. Сведение задачи к однокритериальной требует введения существенных допущений, но облегчает окончательный выбор.
Оптимизационные задачи активно используются там, где важно получение высокоэффективного результата, например, в экономике , технике , информатике . Простейшим примером технико-экономической оптимизационной задачи может быть выбор диаметра трубопровода , по которому насосом перекачивается жидкость . При уменьшении диаметра трубы снижается её стоимость, но увеличиваются затраты энергии на перекачку жидкости из-за возросшего гидравлического сопротивления .
- Примером задачи многопараметрической (двухпараметрической) оптимизации будет задача выбора диаметра трубопровода с горячей жидкостью или паром, так как одновременно выбирается диаметр трубопровода и толщина тепловой изоляции при постоянстве остальных. При этом оба параметра дискретны, так как существуют как сортамент труб , так и типовые параметры готовых теплоизоляционных сегментов .
- Оптимизации подлежат параметры многих технологических процессов , объёмы производства предприятий , уровни надёжности продукции и мн. др.
Как правило, решение оптимизационной задачи распадается на следующие этапы:
- анализ ситуации и формулировка задачи ;
- определение параметров решения, подлежащих оптимизации (то есть тех, которые могут быть изменены в ходе решения);
- установление допустимой области существования параметров, то есть ограничений, налагаемых на параметры и их сочетания;
- выбор и оценка влияния внешних факторов , учитываемых в ходе решения;
- выбор критериев оптимальности;
- построение целевой функции ( математической модели ), которая выдавала бы показатели, соответствующие выбранным критериям;
- выбор математического метода оптимизационных расчётов;
- проведение расчётов и оценка полученных решений по выбранным критериям;
- окончательное принятие решения с учётом неопределённости и риска .
Следует подчеркнуть, что оптимизация в отличие от обычного сравнения вариантов предполагает рассмотрение всех решений, попадающих в область допустимых значений параметров. Те решения, в процессе поиска которых не проводился полный просмотр возможных вариантов, обычно называют «рациональными».
Критерии оптимальности
Правильный выбор критериев играет существенную роль в выборе оптимального решения. В теории принятия решений не найдено общего метода выбора критериев оптимальности. В основном руководствуются опытом или рекомендациями. Наиболее изучен вопрос для финансово-экономических задач , в которых зачастую применяется единственный критерий — максимум , прибыли , либо максимум рентабельности , либо минимум срока окупаемости и т. п. Применение для технических задач только одного критерия (например, максимум уровня безопасности , минимум потребления энергии , минимум экологического ущерба ) часто приводит к абсурдным результатам, выходящим за область допустимых решений, поэтому обычно сочетается с экономическими критериями (например, минимум стоимости или максимум дохода ).
Большие сложности вызывают «неисчисляемые» критерии оптимальности, которые касаются, например, гуманитарных вопросов, художественного впечатления, изменения ландшафта и т. п. (например, максимум удобства, красоты). Для учёта таких критериев могут применяться экспертные оценки .
Наиболее разработаны методы однокритериальной оптимизации, в большинстве случаев позволяющие получить однозначное решение. В задачах многокритериальной оптимизации абсолютно лучшее решение выбрать невозможно (за исключением частных случаев), так как при переходе от одного варианта к другому, как правило, улучшаются значения одних критериев, но ухудшаются значения других. Состав таких критериев называется противоречивым, и окончательно выбранное решение всегда будет компромиссным. Компромисс разрешается введением тех или иных дополнительных ограничений или субъективных предположений. Поэтому невозможно говорить об объективном единственном решении такой задачи.
Часто многокритериальную задачу сводят к однокритериальной применением «свёртки» критериев в один комплексный, называемый целевой функцией (или функцией полезности). Например, в конкурсных процедурах выбора подрядчиков и поставщиков целевая функция рассчитывается на основе балльных критериев. В ряде случаев успешно применяются ранжирование и последовательное применение критериев оптимальности, метод анализа иерархий .
Иногда общим методом для многокритериальных задач называют оптимальность по Парето , которое позволяет найти ряд «неулучшаемых» решений, однако этот метод не гарантирует глобальной оптимальности решений. Менее известна «оптимальность по Слейтеру».
Нормирование критериев (скалярное ранжирование)
Для удобства и однозначности восприятия критерии K i (где i = 1,…, m ; m — число критериев) нормируют (скаляризуют), то есть обычно приводят к следующему виду:
- K i ≥ 0;
- критерии K i убывают с улучшением решения, с ростом качества проектируемого объекта (встречается и обратное требование).
- Например, минимальная цена, потери энергии (равны 1- КПД );
- предпочтительно критерии приводить к безразмерному виду.
- например, относительная цена (по отношению к цене самого дорогого варианта);
- как следствие, наилучшее значение критерия равно нулю. Решения, у которого все критерии нулевые ( K i = 0), соответствует идеальному конечному результату ( ИКР ), когда объекта нет, но его функция выполняется.
См. также
- Оптимизация (математика)
- Теория принятия решений
- Целевая функция
- Показатель качества
- Линейное программирование
- Дискретное программирование
- Эффективность по Парето
- Скалярное ранжирование
Примечания
- [www.xumuk.ru/encyklopedia/2/3119.html Оптимизация в химической технологии]
- . Дата обращения: 2 мая 2010. 27 июня 2009 года.
- . Дата обращения: 2 мая 2010. 14 декабря 2020 года.
- Хорошев А.Н. Введение в управление проектированием механических систем: Учебное пособие. — Белгород, 1999. — 372 с. — ISBN 5-217-00016-3 . от 11 ноября 2011 на Wayback Machine
- . Дата обращения: 2 мая 2010. Архивировано из 13 марта 2010 года.
Литература
- Вентцель Е.С. . — М. : Наука, 1988. — С. .
- Черноруцкий И.Г. Методы оптимизации в теории управления. — СПб. : Питер, 2004. — С. 256. — ISBN 5-94723-514-5 .
- Штойер Р. . — М. : Радио и связь, 1992. — С. .
- 2020-12-08
- 1