Interested Article - Разбиение множества

Разбие́ние мно́жества — это представление его в виде объединения произвольного количества попарно непересекающихся непустых подмножеств .

Разбиение множества.

Определение

Пусть — произвольное множество . Семейство непустых множеств , где — некоторое множество индексов ( конечное или бесконечное ), называется разбиением , если:

  1. для любых , таких что ;
  2. .

При этом множества называются блоками или частями разбиения данного множества .

Разбиения конечных множеств

Разбиения конечных множеств, а также подсчёт количества различных разбиений, удовлетворяющих тем или иным условиям, представляет особый интерес в комбинаторике . В частности, некоторые комбинаторные функции естественно возникают как количества разбиений того или иного вида.

Например, число Стирлинга второго рода представляет собой количество неупорядоченных разбиений n -элементного множества на m частей, в то время как мультиномиальный коэффициент выражает количество упорядоченных разбиений n -элементного множества на m частей фиксированного размера . Количество всех неупорядоченных разбиений n -элементного множества задаётся числом Белла .

Примеры

  • , где — множества всех целых чисел , чётных целых чисел и нечётных целых чисел соответственно;
  • Множество всех вещественных чисел может быть представлено в виде: ;
  • Множество из трёх элементов может быть разбито пятью способами: , , , , — значит, число Белла .

См. также

Источник —

Same as Разбиение множества