Interested Article - Гибридный машинный перевод

Гибридный машинный перевод (Hybrid machine translation — HMT) — интеграция разных подходов машинного перевода из возможных вариантов МП:

Ожидается, что с помощью гибридной архитектуры удастся объединить преимущества этих подходов. Машинный перевод на сегодняшний день представлен двумя основными технологиями: Статистический машинный перевод (Statistical machine translation — SMT) и Машинный перевод на основе правил (Rule-Based Machine Translation — RBMT).

Разработчики software Hybrid MT

  • AppTek HMT «TranSphere®» — полная интеграция SMT и RBMT методологий.
  • Asia Online «SAIC’s OmnifluentTM Human Language Technology».
  • LinguaSys «Carabao Machine Translation engine».
  • Systran «SYSTRAN’s hybrid engine»
  • Polytechnic University of Valencia
  • PROMT «PROMT DeepHybrid»

Подходы

Многоуровненвый

Этот подход к гибридному машинному переводу предполагает параллельное выполнение нескольких систем машинного перевода. Окончательный результат получается путем объединения результатов всех подсистем. Чаще всего в этих системах используются подсистемы статистического и основанного на правилах перевода, но были изучены и другие комбинации. Например, исследователи из Университета Карнеги-Меллона добились определенного успеха, объединив подсистемы перевода на основе примеров , передачи , знаний и статистического перевода в одну систему машинного перевода.

Статистическая генерация правил

Этот подход включает использование статистических данных для создания лексических и синтаксических правил. Затем ввод обрабатывается с использованием этих правил, как если бы это был переводчик на основе правил . Этот подход пытается избежать сложной и отнимающей много времени задачи создания набора всеобъемлющих, детализированных лингвистических правил путем извлечения этих правил из учебного корпуса. Этот подход по-прежнему страдает от многих проблем нормального статистического машинного перевода , а именно от того, что точность перевода будет сильно зависеть от сходства входного текста с текстом обучающего корпуса. В результате этот метод имел наибольший успех в приложениях, ориентированных на конкретную предметную область, и имеет те же трудности с адаптацией предметной области, что и многие системы статистического машинного перевода.

Многопроходный

Этот подход предполагает последовательную обработку ввода несколько раз. Наиболее распространенный метод, используемый в системах многопроходного машинного перевода, - это предварительная обработка ввода с помощью системы машинного перевода на основе правил . Выходные данные основанного на правилах препроцессора передаются в систему статистического машинного перевода , которая производит окончательный результат. Этот метод используется для ограничения объема информации, которую необходимо учитывать статистической системе, что значительно снижает требуемую вычислительную мощность. Это также устраняет необходимость в системе, основанной на правилах, быть полной системой перевода для языка, что значительно снижает количество человеческих усилий и труда, необходимых для создания системы.

На основе уверенности

Этот подход отличается от других гибридных подходов тем, что в большинстве случаев используется только одна технология перевода. Для каждого переведенного предложения создается показатель достоверности, на основе которого можно принять решение, попробовать ли вторичную технологию перевода или продолжить работу с исходным переводом. Omniscien Technologies - одна из компаний, использующих этот подход, при этом NMT является основной технологией, но возвращается к SMT, если показатель достоверности ниже порогового значения или длина предложения очень короткая (например, 1 или 2 слова). SMT также используется, когда общие шаблоны ошибок, такие как несколько повторяющихся слов, появляются последовательно, как это часто бывает с NMT, когда механизм внимания сбит с толку.

Гибридная технология «SMT и RBMT»

Гибридная технология перевода предполагает использование статистических методов для построения словарных баз автоматическим путём на основе параллельных корпусов, формирования нескольких возможных переводов как на лексическом уровне, так и на уровне синтаксической структуры предложения выходного языка, применения постредактирования в автоматическом режиме и выбор лучшего (наиболее вероятного) перевода из возможных на основе языковой модели, построенной по определенному корпусу выходного языка.

Hybrid (SMT + RBMT) System различаются: (п.2.4.3 )

  • Rule-based MT с пост-обработкой статистического подхода.
  • Statistical MT с предварительной обработкой по Rule-based подходу.
  • Полная интеграция RBMT и SMT.

Статистический МП стремится использовать лингвистические данные, а системы с «классическим» подходом, основанном на правилах, применяют статистические методы. Добавление некоторых "сквозных" правил, то есть создание гибридных систем, несколько [ сколько? ] улучшает качество переводов, особенно при недостаточном объеме входных данных, используемых при построении индексных файлов хранения лингвистической информации машинного переводчика, базирующегося на N-граммах.

Объединение RBMT и статистического машинного перевода:

  • Лингвистический анализ входного предложения;
  • Порождение вариантов перевода;
  • Использование статистических технологий;
  • Оценка и выбор лучшего варианта перевода с использованием Языковой модели.

Этапы Гибридной технологии SMT и RBMT:

  • Обучение RBMT на основе параллельного корпуса с использованием статистических технологий;
  • Эксплуатация на основе натренированной системы.

Архитектура Гибридной технологии «SMT и RBMT»

В гибридном машинном переводе RBMT-система дополнена двумя компонентами : модулем статистического постредактирования и модулем языковых моделей. Статистическое постредактирование позволяет сгладить RB-перевод, приближая его к естественному языку и при этом сохраняя четкую структуру синтезируемого текста. Языковые модели используются для оценки гладкости и грамматической правильности вариантов перевода, порождаемых гибридной системой.

Типичная архитектура HMT:

  • Параллельный корпус;
  • Обучение;
  • Языковая модель;
  • Данные для постредактирования;
  • Правила синтеза;
  • Словарь терминологии.
  • Эксплуатация:
    • — Гибридный перевод.

Принцип работы HMT

Совмещение, казалось бы, несовместимых методов перевода, а именно классической технологии машинного перевода Машинный перевод на основе правил (Rule-Based MT) и Статистический машинный перевод (Statistical MT) можно реализовать в гибридной технологии перевода. Кардинальное отличие нового решения состоит в том, что вместо одного варианта перевода программа порождает множество переводов, число которых у одного предложения, в зависимости от многозначности слов, конструкций, и результатов статистической обработки, может доходить до нескольких сотен. Далее вероятностная модель языка позволяет выбрать самый вероятный из предложенных вариантов.

Алгоритм работы типичной HMT:

  • Создание терминологического словаря из параллельных текстов для RBMT автоматическим путём.
  • Порождение всех возможных вариантов перевода на основе:
    • — лексических вариантов;
    • — вариантов синтеза разных конструкций;
    • — применения постредактирования.
  • Выбор лучшего варианта, через реализованную Языковую модель.

Преимущества и недостатки

Что даёт гибридная технология перевода?

  • Быструю автоматическую настройку на основе Translation Memories заказчика;
  • Терминологическую точность перевода, а также единство стиля;
  • Получение дополнительных полезных данных — двуязычного терминологического словаря.

Преимущества и недостатки Машинного перевода на основе правил

Преимущества RBMT:

Сохраняются:

  • — синтаксическая и морфологическая точность;
  • — стабильность и предсказуемость результата;
  • — возможность настройки на предметную область.

Недостатки RBMT:

  • — трудоемкость и длительность разработки;
  • — необходимость поддерживать и актуализировать лингвистические БД;
  • — «машинный акцент» при переводе.

Недостатки нивелируются за счет использования параллельных корпусов и статистических методов.

  • — автоматическая настройка лингвистических баз данных (быстрое и качественное извлечение терминологии),
  • — исчезает «машинный» акцент при переводе (варианты синтеза и постредактирование).

Преимущества и недостатки Статистических систем перевода

Преимущества SMT:

  • — быстрая настройка;
  • — легко добавлять новые направления перевода;
  • — гладкость перевода.

Недостатки SMT:

  • — «Дефицит» параллельных корпусов;
  • — многочисленные грамматические ошибки;
  • — нестабильность перевода.

См. также

Примечания

  1. . Дата обращения: 27 марта 2013. 13 марта 2016 года.
  2. . 8 апреля 2013 года.
  3. . Дата обращения: 29 марта 2013. 4 марта 2016 года.
  4. (недоступная ссылка)
  5. . Дата обращения: 29 марта 2013. Архивировано из 4 марта 2016 года.
  6. . Дата обращения: 1 апреля 2013. 8 апреля 2013 года.
  7. . Дата обращения: 1 апреля 2013. 8 апреля 2013 года.
  8. (недоступная ссылка)
  9. . Дата обращения: 29 марта 2013. 12 мая 2015 года.
  10. . Дата обращения: 17 апреля 2013. Архивировано из 19 апреля 2014 года.
  11. . Дата обращения: 1 апреля 2013. 4 марта 2016 года.
  12. . Дата обращения: 1 апреля 2013. 5 марта 2016 года.
  13. Дата обращения: 4 апреля 2013. 8 апреля 2013 года.
  14. . 8 апреля 2013 года.
  15. . Дата обращения: 23 марта 2013. Архивировано из 8 апреля 2013 года.
  16. . Дата обращения: 27 марта 2013. Архивировано из 9 ноября 2012 года.
  17. . 8 апреля 2013 года.
Источник —

Same as Гибридный машинный перевод