Interested Article - Цветовые пространства RGB

Диаграмма цветности CIE 1931 года, показывающая некоторые цветовые пространства RGB, определенные их треугольниками цветности.

Цветовое пространство RGB ( аббревиатура английских слов r ed, g reen, b lue — красный, зелёный, синий) — это любое аддитивное цветовое пространство, основанное на цветовой модели RGB .

Цветовые пространства RGB обычно описывают входной сигнал, поступающий на устройства отображения, такие как телевизионные экраны и компьютерные мониторы.

Определение

RGB-куб

Человеческий глаз содержит три типа цветочувствительных колбочек . Каждая клетка реагирует на свет длинной, средней или короткой длины волны, который мы обычно классифицируем как красный, зеленый и синий.

Цветовое пространство RGB определяется следующими характеристиками:

Цветовое пространство RGB использует основные цвета цветовой модели RGB . Смешивание трех основных цветов в разных пропорциях создает восприятие всех остальных цветов. Применяя закон Грассмана об аддитивности света , можно получить диапазон цветов, заключенный в треугольник на диаграмме цветности, определенной с помощью основных цветов в качестве вершин . Кривая тонального отклика и точка белого дополнительно определяют возможные цвета, создавая объем кодируемых цветов, заключенный в трёхмерном треугольнике.

Использование

Один миллион цветов в пространстве RGB, видимый на полноразмерном изображении.

Цветовые пространства RGB хорошо подходят для описания электронного отображения цвета, например, компьютерных мониторов и цветного телевидения . Эти устройства часто воспроизводят цвета с помощью массива красных, зеленых и синих люминофоров, возбуждаемых электронно-лучевой трубкой (ЭЛТ), или массив красных, зеленых и синих ЖК-дисплеев , освещаемых подсветкой, и поэтому естественно описываются аддитивной цветовая моделью с основными цветами RGB.

Первые примеры цветовых пространств RGB появились с принятием стандарта цветного телевидения NTSC в 1953 году в Северной Америке, за которым последовали PAL и SECAM , охватившие остальной мир. Эти ранние пространства RGB частично определялись люминофором, используемым в ЭЛТ, использовавшимися в то время, и гаммой электронного луча. Хотя эти цветовые пространства воспроизводили заданные цвета с использованием аддитивных основных цветов красного, зеленого и синего, сам широковещательный сигнал кодировался из компонентов RGB в составной сигнал, такой как YIQ , и декодировался приемником обратно в сигналы RGB для отображения.

HDTV использует цветовое пространство BT.709 , позже адаптированное для компьютерных мониторов в sRGB . Оба используют одни и те же основные цвета и точку белого, но разные передаточные функции . Передаточная функция sRGB имеет более низкое значение покателя степени ("гаммы"), чем Rec. 709. поскольку HDTV предназначен для темной гостиной, а sRGB — для более ярких офисных пространств. Цветовой охват этих пространств ограничен —покрывается только 35,9% цветового охвата CIE 1931 года. Это позволяет использовать ограниченную разрядность без возникновения цветовых полос и, следовательно, уменьшает полосу пропускания передачи, но в то же время это мешает кодированию глубоко насыщенных цветов, которые могут быть доступны в альтернативных цветовых пространствах. Некоторые цветовые пространства RGB, такие как Adobe RGB и ProPhoto , предназначенные для создания, а не передачи изображений, разработаны с расширенными цветовыми охватами для решения этой проблемы, однако это не означает, что в большем пространстве «больше цветов». Числовое количество цветов связано с битовой глубиной, а не с размером или формой цветового охвата. Большое пространство с низкой битовой глубиной может отрицательно сказаться на плотности цветового охвата и привести к высокой ошибки  .

Более поздние цветовые пространства, такие как Rec. 2020 для UHD -телевизоров определяет чрезвычайно широкий цветовой охват, покрывающий 63,3% пространства CIE 1931. Этот стандарт в настоящее время невозможно реализовать с помощью современной технологии ЖК-дисплеев, и в настоящее время разрабатываются альтернативные архитектуры, такие как устройства на основе квантовых точек или OLED .

Характеристики цветовых пространств RGB

Цвнтовые пространства RGB
Цветовое пространство Стандарт Год Точка белого Основные цвета Гамма дисплея (показатель степени) Параметры передаточной функции
Красный Зеленый Синий γ α β δ βδ
x ʀ y ʀ x ɢ y ɢ x ʙ y ʙ EOTF a + 1 K 0 /φ = E t φ K 0
NTSC-J Основано на NTSC(M) 1987 D93 0.63 0.34 0.31 0.595 0.155 0.07 2.5
NTSC , MUSE SMPTE RP 145 ( C ), 170M, 240M 1987 D65 20 / 9 1.1115 0.0057 4 0.0228
Apple RGB (компьютер Apple) 0.625 0.28 1.8
PAL / SECAM EBU 3213-E, BT.470/601 (B/G) 1970 0.64 0.33 0.29 0.60 0.15 0.06 2.8 14 / 5
sRGB IEC 61966-2-1 1996, 1999 0.30 2.2 12 / 5 1.055 0.0031308 12.92 0.04045
scRGB IEC 61966-2-2 2003
HDTV ITU-R BT.709 1999 2.4 20 / 9 1.099 0.004 4.5 0.018
Adobe RGB (Adobe) 1998 0.21 0.71 2.2 563 / 256
M.A.C. ITU-R BO.650-2 1985 0.67 0.14 0.08 2.8
NTSC-FCC ITU-R BT.470/601 (M) 1953 C 2.5 11 / 5
PAL-M ITU-R BT.470-6 1972 2.2
eciRGB ISO 22028-4 2008, 2012 D50 1.8 3 1.16 0.008856 9.033 0.08
DCI-P3 SMPTE RP 431-2 2011 6300K 0.68 0.32 0.265 0.69 0.15 0.06 2.6 13 / 5
Display P3 SMPTE EG 432-1 2010 D65 ~2.2 12 / 5 1.055 0.0031308 12.92 0.04045
UHDTV ITU-R BT.2020, BT.2100 2012, 2016 0.708 0.292 0.170 0.797 0.131 0.046 2.4 1.0993 0.018054 4.5 0.081243
Wide Gamut (Adobe) D50 0.7347 0.2653 0.1152 0.8264 0.1566 0.0177 2.2 563 / 256
RIMM ISO 22028-3 2006, 2012 0.7347 0.2653 0.1596 0.8404 0.0366 0.0001 2.222 20 / 9 1.099 0.0018 5.5 0.099
ProPhoto (ROMM) ISO 22028-2 2006, 2013 0.734699 0.265301 0.159597 0.840403 0.036598 000105 1.8 9 / 5 1 0.001953125 16 0.031248
CIE RGB CIE 1931 color space 1931 E 0.73474284 0.26525716 0.27377903 0.7174777 0.16655563 0.00891073
CIE XYZ 1 0 0 1 0 0 1

Стандарт цветового пространства CIE 1931 определяет как пространство CIE RGB, которое является цветовым пространством RGB с монохроматическими основными цветами , так и цветовое пространство CIE XYZ, которое функционально аналогично линейному цветовому пространству RGB, однако основные цвета не являются физически реализуемыми, поэтому не описываются как красный, зеленый и синий.

См. также

Примечания

  1. Saini, Harvinder Singh. / Harvinder Singh Saini, Rishi Sayal, Rajkumar Buyya … [ и др. ] . — Singapore : Springer Singapore, 2020. — P. 235. — ISBN 9789811520433 . от 28 сентября 2023 на Wayback Machine
  2. Pascale, Danny. . Дата обращения: 20 октября 2021. 10 октября 2014 года.
  3. Hunt, R. W. G. . — Chichester UK: Wiley–IS&T Series in Imaging Science and Technology, 2004. — ISBN 0-470-02425-9 .
  4. (англ.) . Android Authority (17 мая 2023). Дата обращения: 28 сентября 2023. 28 сентября 2023 года.
  5. . www.image-engineering.de . Дата обращения: 28 сентября 2023. 28 сентября 2023 года.
  6. Yamashita; Nishida, Yukihiro; Emoto, Masaki; Ohmura, Kohei; Masaoka, Kenichiro . Information Display . 10 февраля 2018 года.
  7. Baker. (англ.) . TFTCentral (19 февраля 2014). Дата обращения: 13 января 2023. 13 января 2023 года.
  8. Chen, Haiwei (September 2017). . IEEE Journal of Selected Topics in Quantum Electronics . 23 (5): 1—11. Bibcode : . doi : . из оригинала 3 декабря 2023 . Дата обращения: 28 сентября 2023 .
  9. Huang, Yuge (18 June 2020). "Mini-LED, Micro-LED and OLED displays: present status and future perspectives". Light: Science & Applications (англ.) . 9 (1): 105. Bibcode : . doi : . PMID .
Источник —

Same as Цветовые пространства RGB