Индукция (в физиологии)
- 1 year ago
- 0
- 0
Математическая индукция — метод математического доказательства , который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел . Для этого сначала проверяется истинность утверждения с номером — база (базис) индукции, а затем доказывается, что если верно утверждение с номером , то верно и следующее утверждение с номером — шаг индукции, или индукционный переход.
Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино . Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.
Предположим, что требуется установить справедливость бесконечной последовательности утверждений, занумерованных натуральными числами : .
Допустим, что
Тогда все утверждения нашей последовательности верны.
Логическим основанием для этого метода доказательства служит так называемая аксиома индукции , пятая из аксиом Пеано , определяющих натуральные числа . Верность метода индукции эквивалентна тому, что в любом непустом подмножестве натуральных чисел существует минимальный элемент.
Существует также вариация, так называемый принцип полной математической индукции. Вот его строгая формулировка:
Пусть имеется последовательность утверждений , , , . Если для любого натурального из того, что истинны все , , , , , следует также истинность , то все утверждения в этой последовательности истинны, то есть . |
В этой вариации база индукции оказывается излишней, поскольку является тривиальным частным случаем индукционного перехода. Действительно, при условие в точности эквивалентно (его истинности не из чего следовать). Однако зачастую доказывать индукционный переход для всё равно приходится отдельно, так что разумно бывает выделить эту его часть в качестве базы.
Принцип полной математической индукции эквивалентен аксиоме индукции в аксиомах Пеано .
Также он является прямым применением более сильной трансфинитной индукции .
Осознание метода математической индукции как отдельного важного метода восходит к Блезу Паскалю и Герсониду , хотя отдельные случаи применения встречаются ещё в античные времена у Прокла и Эвклида . Современное название метода было введено де Морганом в 1838 году .
Сумма геометрической прогрессии. Доказать, что, каковы бы ни были натуральное и вещественное , выполняется равенство
Доказательство. Индукцией по для произвольного .
Докажем базу индукции для :
Докажем переход : предположим, что для выполнено
тогда для , согласно предположению:
Значит по принципу математической индукции выполнено равенство для всякого . Что и требовалось доказать.
Комментарий: истинность утверждения в этом доказательстве — то же, что истинность равенства
Важные примеры: неравенство Бернулли , бином Ньютона .