Interested Article - Этилен

Этиле́н ( эте́н , химическая формула С 2 H 4 ) — органическое соединение , относящееся к классу непредельных углеводородов алкенов ( олефинов ).

При нормальных условиях — бесцветный горючий газ легче воздуха со слабым сладковатым запахом.

Физические свойства

Этилен — это бесцветный горючий газ со слабым сладковатым запахом. Он легче воздуха и частично растворим в воде (25,6 мл в 100 мл воды при 0 °C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах.

Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам . Играет чрезвычайно важную роль в промышленности, а также является фитогормоном . Этилен — самое производимое органическое соединение в мире ; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2—3 % в год .

Этилен обладает наркотическим действием. Имеет 4-й класс опасности (вещества малоопасные).

Основные химические свойства

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

Реакцию гидратации открыл A.M. Бутлеров . Данная реакция используется для промышленного получения этилового спирта .
  • Окисление — реакция отличия непредельных соединений от предельных с помощью пропускания через раствор перманганата калия этилена, в результате чего раствор обесцветится :

Получение

Этилен стали широко применять в качестве мономера перед Второй мировой войной в связи с необходимостью получения высококачественного изоляционного материала, способного заменить поливинилхлорид . После разработки метода полимеризации этилена под высоким давлением и изучения диэлектрических свойств получаемого полиэтилена началось его производство в мире.

Основным промышленным методом получения этилена является пиролиз жидких дистиллятов нефти или низших насыщенных углеводородов. Реакция проводится в трубчатых печах при +800—950 °С и давлении 0,3 МПа. При использовании в качестве сырья прямогонного бензина выход этилена составляет примерно 30 %. Одновременно с этиленом образуется также значительное количество жидких углеводородов, в том числе и ароматических. При пиролизе газойля выход этилена составляет примерно 15—25 %. Наибольший выход этилена — до 50 % — достигается при использовании в качестве сырья насыщенных углеводородов: этана, пропана и бутана. Их пиролиз проводят в присутствии водяного пара.

При выпуске с производства, при товарно-учётных операциях, при проверке его на соответствие нормативно-технической документации производится отбор проб этилена по процедуре, описанной в ГОСТ 24975.0-89 «Этилен и пропилен . Методы отбора проб». Отбор пробы этилена может производиться и в газообразном и в сжиженном виде в специальные пробоотборники по ГОСТ 14921.

Промышленно получаемый в России этилен должен соответствовать требованиям, изложенным в ГОСТ 25070-2013 «Этилен. Технические условия».

Структура производства

В настоящее время в структуре производства этилена 66 % приходится на крупнотоннажные установки пиролиза, ~17 % — на малотоннажные установки газового пиролиза, ~11 % составляет пиролиз бензина и 8 % падает на пиролиз этана .

Применение

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 1980-х годов в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений , среди прочего отвечает за опадание иголок у хвойных.

Электронное и пространственное строение молекулы

Атомы углерода находятся во втором валентном состоянии (sp 2 - гибридизация ). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Биологическая роль

Сигнальный каскад этилена у растений. Этилен легко проникает сквозь клеточную мембрану и связывается с рецепторами , расположенными на эндоплазматическом ретикулуме . Рецепторы после активации высвобождают связанный EIN2. Это активирует каскад передачи сигнала , который приводит к активации экспрессии определённых генов и в конечном итоге к включению специфического ответа на этилен у данного растения в данной фазе созревания. Активированные участки ДНК считываются в мРНК , которая, в свою очередь, в рибосомах считывается в функционирующий белок фермента , который катализирует биосинтез этилена, тем самым продукция этилена в ответ на изначальный этиленовый же сигнал повышается до определённого уровня, запуская каскад реакций созревания растения.

Этилен — первый из обнаруженных газообразных растительных гормонов , обладающий очень широким спектром биологических эффектов . Этилен выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов) , распускание бутонов (процесс цветения), старение и опадание листьев и цветков. Этилен называют также гормоном стресса, так как он участвует в реакции растений на биотический и абиотический стресс, и синтез его в органах растений усиливается в ответ на разного рода повреждения. Кроме того, являясь летучим газообразным веществом, этилен осуществляет быструю коммуникацию между разными органами растений и между растениями в популяции, что важно, в частности, при развитии стресс-устойчивости .

К числу наиболее известных функций этилена относится развитие так называемого тройного ответа у этиолированных (выращенных в темноте) проростков при обработке этим гормоном. Тройной ответ включает в себя три реакции: укорочение и утолщение гипокотиля , укорочение корня и усиление апикального крючка (резкий изгиб верхней части гипокотиля). Ответ проростков на этилен крайне важен на первых этапах их развития, так как способствует пробиванию ростков к свету .

В коммерческом сборе плодов и фруктов используют специальные комнаты или камеры для дозревания плодов , в атмосферу которых этилен впрыскивается из специальных каталитических генераторов, производящих газообразный этилен из жидкого этанола . Обычно для стимулирования дозревания плодов используется концентрация газообразного этилена в атмосфере камеры от 500 до 2000 ppm в течение 24-48 часов. При более высокой температуре воздуха и более высокой концентрации этилена в воздухе дозревание плодов идёт быстрее. Важно, однако, при этом обеспечивать контроль содержания углекислого газа в атмосфере камеры, поскольку высокотемпературное созревание (при температуре выше 20 градусов Цельсия) или созревание при высокой концентрации этилена в воздухе камеры приводит к резкому повышению выделения углекислого газа быстро созревающими плодами, порой до 10 % углекислоты в воздухе спустя 24 часа от начала дозревания, что может привести к углекислотному отравлению как работников, убирающих уже дозревшие плоды, так и самих фруктов .

Этилен использовался для стимулирования созревания плодов ещё в Древнем Египте. Древние египтяне намеренно царапали или слегка мяли, отбивали финики, фиги и другие плоды с целью стимулировать их созревание (повреждение тканей стимулирует образование этилена тканями растений). Древние китайцы сжигали деревянные ароматические палочки или ароматические свечи в закрытых помещениях с целью стимулировать созревание персиков (при сгорании свеч или дерева выделяется не только углекислый газ, но и недоокисленные промежуточные продукты горения, в том числе и этилен). В 1864 году было обнаружено, что утечка природного газа из уличных фонарей вызывает торможение роста близлежащих растений в длину, их скручивание, аномальное утолщение стеблей и корней и ускоренное созревание плодов . В 1901 году русский учёный Дмитрий Нелюбов показал, что активным компонентом природного газа, вызывающим эти изменения, является не основной его компонент, метан, а присутствующий в нём в малых количествах этилен . Позднее в 1917 году Сара Дубт доказала, что этилен стимулирует преждевременное опадание листьев . Однако только в 1934 году Гейн обнаружил, что сами растения синтезируют эндогенный этилен. . В 1935 году Крокер предположил, что этилен является растительным гормоном, ответственным за физиологическое регулирование созревания плодов, а также за старение вегетативных тканей растения, опадание листьев и торможение роста .

Цикл Янга

Этилен образуется практически во всех частях высших растений, включая листья, стебли, корни, цветки, мякоть и кожуру плодов и семена. Образование этилена регулируется множеством факторов, включая как внутренние факторы (например фазы развития растения), так и факторы внешней среды. В течение жизненного цикла растения, образование этилена стимулируется в ходе таких процессов, как оплодотворение (опыление), созревание плодов, опадание листьев и лепестков, старение и гибель растения. Образование этилена стимулируется также такими внешними факторами, как механическое повреждение или ранение, нападение паразитов (микроорганизмов, грибков, насекомых и др.), внешние стрессы и неблагоприятные условия развития, а также некоторыми эндогенными и экзогенными стимуляторами, такими, как ауксины и другие .

Цикл биосинтеза этилена начинается с превращения аминокислоты метионина в S-аденозил-метионин (SAMe) при помощи фермента метионин-аденозилтрансферазы. Затем S-аденозил-метионин превращается в 1-аминоциклопропан-1-карбоксиловую кислоту (АЦК, ACC ) при помощи фермента 1-аминоциклопропан-1-карбоксилат-синтетазы (АЦК-синтетазы). Активность АЦК-синтетазы лимитирует скорость всего цикла, поэтому регуляция активности этого фермента является ключевой в регуляции биосинтеза этилена у растений. Последняя стадия биосинтеза этилена требует наличия кислорода и происходит при действии фермента аминоциклопропанкарбоксилат-оксидазы (АЦК-оксидазы), ранее известной как этиленобразующий фермент. Биосинтез этилена у растений индуцируется как экзогенным, так и эндогенным этиленом (положительная обратная связь). Активность АЦК-синтетазы и, соответственно, образование этилена повышается также при высоких уровнях ауксинов, в особенности индолуксусной кислоты, и цитокининов .

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR 1 у арабидопсиса ( Arabidopsis ). Гены, кодирующие рецепторы для этилена, были клонированы у арабидопсиса и затем у томата . Этиленовые рецепторы кодируются множеством генов как в геноме арабидопсиса, так и в геноме томатов. Мутации в любом из семейства генов, которое состоит из пяти типов этиленовых рецепторов у арабидопсиса и минимум из шести типов рецепторов у томата, могут привести к нечувствительности растений к этилену и нарушениям процессов созревания, роста и увядания . Последовательности ДНК , характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий .

Неблагоприятные внешние факторы, такие, как недостаточное содержание кислорода в атмосфере, наводнение, засуха, заморозки, механическое повреждение (ранение) растения, нападение патогенных микроорганизмов, грибков или насекомых, могут вызывать повышенное образование этилена в тканях растений. Так, например, при наводнении корни растения страдают от избытка воды и недостатка кислорода (гипоксии), что приводит к биосинтезу в них 1-аминоциклопропан-1-карбоксиловой кислоты. АЦК затем транспортируется по проводящим путям в стеблях вверх, до листьев, и в листьях окисляется до этилена. Образовавшийся этилен способствует эпинастическим движениям, приводящим к механическому стряхиванию воды с листьев, а также увяданию и опаданию листьев, лепестков цветков и плодов, что позволяет растению одновременно и избавиться от избытка воды в организме, и сократить потребность в кислороде за счёт сокращения общей массы тканей .

Небольшие количества эндогенного этилена также образуются в клетках животных, включая человека, в процессе перекисного окисления липидов. Некоторое количество эндогенного этилена затем окисляется до этиленоксида , который обладает способностью алкилировать ДНК и белки , в том числе гемоглобин (формируя специфический аддукт с N-терминальным валином гемоглобина — N-гидроксиэтил-валин) . Эндогенный этиленоксид также может алкилировать гуаниновые основания ДНК , что приводит к образованию аддукта 7-(2-гидроксиэтил)-гуанина, и является одной из причин присущего всем живым существам риска эндогенного канцерогенеза . Эндогенный этиленоксид также является мутагеном . С другой стороны, существует гипотеза, что если бы не образование в организме небольших количеств эндогенного этилена и этиленоксида, то скорость возникновения спонтанных мутаций и соответственно скорость эволюции была бы ниже.

Примечания

  1. (англ.) : A CRC quick reference handbook CRC Press , 1993. — ISBN 978-0-8493-4498-5
  2. Devanney Michael T. (англ.) . SRI Consulting (сентябрь 2009). Архивировано из 18 июля 2010 года.
  3. (англ.) . WP Report . SRI Consulting (январь 2010). Архивировано из 31 августа 2010 года.
  4. метана , этана , , пропана , пропилена , бутана , альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003) (недоступная ссылка)
  5. Хомченко Г.П. §16.6. Этилен и его гомологи // Химия для поступающих в вузы. — 2-е изд. — М. : Высшая школа , 1993. — С. 345. — 447 с. — ISBN 5-06-002965-4 .
  6. В. Ш. Фельдблюм. Димеризация и диспропорционирование олефинов. М.: Химия, 1978
  7. . Дата обращения: 21 января 2007. Архивировано из 20 января 2007 года.
  8. . Дата обращения: 3 января 2011. 21 ноября 2011 года.
  9. Lin, Z.; Zhong, S.; Grierson, D. (англ.) // Journal of Experimental Botany : journal. — Oxford University Press , 2009. — Vol. 60 , no. 12 . — P. 3311—3336 . — doi : . — .
  10. от 21 июня 2018 на Wayback Machine / J Plant Growth Regul (2007) 26:143-159 (англ.)
  11. Лутова Л.А. Генетика развития растений / ред. С.Г. Инге-Вечтомов. — 2-е изд.. — Санкт-Петербург: Н-Л, 2010. — С. 432.
  12. . ne-postharvest.com от 14 сентября 2010 на Wayback Machine
  13. Нелюбов Д. Н. О горизонтальной нутации у Pisum sativum и некоторых других растений // Труды Санкт-Петербургского Общества Естествознания : журнал. — 1901. — Т. 31 , № 1 . , также Beihefte zum «Bot. Centralblatt», т. Х, 1901
  14. Doubt, Sarah L. (англ.) // Botanical Gazette : journal. — 1917. — Vol. 63 , no. 3 . — P. 209—224 . — doi : . — JSTOR .
  15. Gane R. Production of ethylene by some fruits (англ.) // Nature. — 1934. — Vol. 134 , no. 3400 . — P. 1008 . — doi : . — Bibcode : .
  16. Crocker W, Hitchcock AE, Zimmerman PW. (1935) «Similarities in the effects of ethlyene and the plant auxins». Contrib. Boyce Thompson Inst. 7. 231-48. Auxins Cytokinins IAA Growth substances, Ethylene
  17. Yang, S. F., and Hoffman N. E. Ethylene biosynthesis and its regulation in higher plants (англ.) // Ann. Rev. Plant Physiol. : journal. — 1984. — Vol. 35 . — P. 155—189 . — doi : .
  18. Bleecker A. B. , Esch J. J. , Hall A. E. , Rodríguez F. I. , Binder B. M. (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. — 1998. — Vol. 353, no. 1374 . — P. 1405—1412. — doi : . — . [ ]
  19. от 22 февраля 2015 на Wayback Machine . planthormones.inf
  20. Filser J. G., Denk B., Törnqvist M., Kessler W., Ehrenberg L. (англ.) // Arch Toxicol. : journal. — 1992. — Vol. 66 , no. 3 . — P. 157—163 . — . 21 июня 2018 года.
  21. Bolt H. M., Leutbecher M., Golka K. (англ.) // Arch Toxicol. : journal. — 1997. — Vol. 71 , no. 11 . — P. 719—721 . — . 19 августа 2018 года.
  22. Csanády G. A., Denk B., Pütz C., Kreuzer P. E., Kessler W., Baur C., Gargas M. L., Filser JG. (англ.) // Toxicol Appl Pharmacol. : journal. — 2000. — 15 May ( vol. 165 , no. 1 ). — P. 1—26 . — . 21 июня 2018 года.
  23. Thier R., Bolt HM. (англ.) // Crit Rev Toxicol. : journal. — 2000. — September ( vol. 30 , no. 5 ). — P. 595—608 . — . 19 августа 2018 года.

Литература

Ссылки

  • Безуглова О. С. . Удобрения и стимуляторы роста. Дата обращения: 22 февраля 2015. 22 февраля 2015 года.
Источник —

Same as Этилен