Пятый период периодической системы
- 1 year ago
- 0
- 0
38 |
Стронций
|
|
|
5s 2 |
Стро́нций ( химический символ — Sr , от лат. Strontium ) — химический элемент 2-й группы (по устаревшей классификации — главной подгруппы второй группы, IIA) пятого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 38.
Простое вещество стронций — это мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета .
Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой .
Новый элемент обнаружили в минерале стронцианите , найденном в 1764 году в свинцовом руднике близ шотландской деревни ( англ. Strontian , гэльск. Sròn an t-Sìthein ), давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено в 1787 году Уильямом Крюйкшенком и Адером Крофордом . Выделен в чистом виде сэром Хемфри Дэви в 1808 году.
В свободном виде стронций не встречается ввиду его высокой химической активности. Он входит в состав около 40 минералов. Из них наиболее важный — целестин SrSO 4 (51,2 % Sr). Добывают также стронцианит SrCO 3 (64,4 % Sr). Эти два минерала имеют промышленное значение. Чаще всего стронций присутствует как примесь в различных кальциевых минералах.
Среди прочих минералов стронция:
По уровню физической распространённости в земной коре стронций занимает 23-е место — его массовая доля составляет 0,014 % (в литосфере — 0,045 %). Мольная доля металла в земной коре 0,0029 %.
Стронций содержится в морской воде (8 мг/л) .
Известны месторождения в Калифорнии, Аризоне ( США ); Новой Гранаде ; Турции, Иране, Китае, Мексике, Канаде, Малави .
В России обнаружены, но в настоящее время не разрабатываются месторождения стронциевых руд: Синие камни (Дагестан), Мазуевское (Пермский край), Табольское (Тульская область), а также месторождения в Бурятии, Иркутской области, Красноярском крае, Якутии и на Курильских островах .
Стронций — мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.
Полиморфен — известны три его модификации. До 215 °C устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605 °C — гексагональная (β-Sr), выше 605 °C — кубическая объёмноцентрированная модификация (γ-Sr).
Температура плавления: 768 °C, температура кипения: 1390 °C.
Стронций в своих соединениях всегда проявляет степень окисления +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними .
В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В). Энергично реагирует с водой, образуя гидроксид :
Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H 2 SO 4 , HNO 3 ) реагирует слабо.
Металлический стронций быстро окисляется на воздухе , образуя желтоватую плёнку, в которой, помимо оксида SrO , всегда присутствуют пероксид SrO 2 и нитрид Sr 3 N 2 . При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.
Энергично реагирует с неметаллами — серой , фосфором , галогенами . Взаимодействует с водородом (выше 200 °C), азотом (выше 400 °C). Практически не реагирует со щелочами.
При высоких температурах реагирует с CO 2 , образуя карбид :
Легкорастворимы соли стронция с анионами Cl − , I − , NO 3 − . Соли с анионами F − , SO 4 2− , CO 3 2− , PO 4 3− малорастворимы.
Из-за его чрезвычайной реактивности с кислородом и водой, стронций встречается в природе только в соединениях с другими элементами, такими как минералы стронцианит и целестин. Для предотвращения окисления его хранят в закрытой стеклянной посуде под жидким углеводородом, таким как минеральное масло или керосин. Свежеоткрытый металлический стронций быстро приобретает желтоватый цвет с образованием оксида. Мелкодисперсный металлический стронций является пирофорным , что означает, что он самовозгорается на воздухе при комнатной температуре. Летучие соли стронция придают пламени ярко-красный цвет, и эти соли используются в пиротехнике и в производстве факелов . Подобно кальцию и барию, а также щелочным металлам и двухвалентным лантаноидам европия и иттербия, металлический стронций растворяется непосредственно в жидком аммиаке, давая тёмно-синий раствор сольватированных электронов .
Органические соединения стронция содержат одну или несколько связей стронций-углерод. Они были описаны как промежуточные звенья в реакциях типа Барбье .
Ионы стронция образуют устойчивые соединения с краун-эфирами .
Существуют три способа получения металлического стронция:
Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием . Далее полученный стронций очищается возгонкой.
Электролитическое получение стронция электролизом расплава смеси SrCl 2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.
При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к лёгкому воспламенению.
Основные области применения стронция и его химических соединений — это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.
Стронций применяется для легирования меди и некоторых её сплавов, для введения в аккумуляторные свинцовые сплавы, для десульфурации чугуна, меди и сталей. Введение небольших добавок стронция в чугуны и титановые сплавы позволяет значительно улучшить их механические свойства. По новым исследованиям, добавка стронция позволяет значительно увеличить морозостойкость сплавов.
Стронций чистотой 99,99—99,999 % применяется для восстановления урана.
В пиротехнике применяются карбонат , нитрат , для окрашивания пламени в карминово- красный цвет . Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.
Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и, в частности, разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.
Оксид стронция применяется в качестве компонента сверхпроводящих керамик.
Оксид стронция , в составе твёрдого раствора оксидов других щёлочноземельных металлов — бария и кальция ( BaO , CaO), используется в качестве активного слоя катодов косвенного накала в вакуумных электронных приборах . На пике производства телевизионных электронно-лучевых трубок 75 % потребления стронция в Соединённых Штатах использовалось для производства стекла лицевой панели . С заменой электронно-лучевых трубок другими методами отображения потребление стронция резко сократилось .
Фторид стронция используется в качестве компонента твёрдотельных фторионных аккумуляторных батарей с большой энергоёмкостью и энергоплотностью.
Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций- кадмий — для анодов гальванических элементов.
Изотоп с атомной массой 89, имеющий период полураспада 50,55 суток, применяется (в виде хлорида) в качестве противоопухолевого средства .
Не следует путать действие на организм человека природного стронция (не радиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция .
Стронций природный — составная часть микроорганизмов, растений и животных. Стронций является аналогом кальция, поэтому он наиболее эффективно откладывается в костной ткани. В мягких тканях задерживается менее 1 %. Стронций с большой скоростью накапливается в организме детей до четырёхлетнего возраста, когда идёт активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы.
Пути попадания:
Попадание природного стронция в организм человека может быть связано с работой в областях его применения. Основные области применения природного стронция — радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, производство магнитных материалов.
Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина D, неполноценное питание, нарушения соотношения микроэлементов таких, как барий, молибден, селен и другие). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» — поражение и деформацию суставов, задержку роста и другие нарушения.
Радиоактивный стронций (как правило, стронций-90 ) практически всегда негативно воздействует на организм человека. Откладываясь в костях, он облучает костную ткань и костный мозг, что увеличивает риск заболевания злокачественными опухолями костей, а при поступлении большого количества может вызвать лучевую болезнь. Области применения радиоактивного стронция — производство атомных электрических батарей, атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и другое.
В природе стронций встречается в виде смеси четырёх стабильных изотопов 84 Sr (0,56(2) %), 86 Sr (9,86(20) %), 87 Sr (7,00(20) %), 88 Sr (82,58(35) %) . Проценты указаны по числу атомов. Известны также радиоактивные изотопы стронция с массовым числом от 73 до 105. Лёгкие изотопы (до 85 Sr включительно, а также изомер 87m Sr) испытывают электронный захват, распадаясь в соответствующие изотопы рубидия . Тяжёлые изотопы, начиная с 89 Sr, испытывают β − -распад , переходя в соответствующие изотопы иттрия . Наиболее долгоживущим и важным в практическом плане среди радиоактивных изотопов стронция является 90 Sr.
Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28,78 года . 90 Sr претерпевает β − -распад , переходя в радиоактивный 90 Y (период полураспада 64 часа), который, в свою очередь, распадается в стабильный цирконий-90. Полный распад стронция-90, попавшего в окружающую среду, произойдёт лишь через несколько сотен лет.
90 Sr образуется при ядерных взрывах и внутри ядерного реактора во время его работы. Образование стронция-90 при этом происходит как непосредственно в результате деления ядер урана и плутония, так и в результате бета-распада короткоживущих ядер с массовым числом A = 90 (в цепочке 90 Se → 90 Br → 90 Kr → 90 Rb → 90 Sr ), образующихся при делении.
Применяется в производстве радиоизотопных источников энергии в виде титаната стронция (плотность 4,8 г/см³ , а энерговыделение — около 0,54 Вт/см³ ).