Interested Article - Сурьма
- 2020-04-08
- 2
51 |
Сурьма
|
|
|
4d 10 5s 2 5p 3 |
Сурьма́ ( химический символ — Sb , от лат. Stibium ) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы, VA) пятого периода периодической системы химических элементов Д. И. Менделеева ; имеет атомный номер 51.
Простое вещество сурьма — это полуметалл серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации (взрывчатая, чёрная и жёлтая сурьма) .
Происхождение слова
Русское слово «сурьма» произошло от турецкого и крымскотатарского sürmä ; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей.
История
Сурьма известна с глубокой древности. В странах Востока она использовалась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в XIX в. до н. э. порошок сурьмяного блеска (природный Sb 2 S 3 ) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как στίμμι и στίβι , отсюда лат. stibium . Около XII—XIV вв. н. э. появилось название antimonium . Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604 году. В 1789 году А. Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony , испанский и итальянский antimonio , немецкий Antimon ).
Нахождение в природе
Кларк сурьмы — 500 мг/т. Её содержание в вулканических породах в общем ниже, чем в осадочных. Из осадочных пород наиболее высокие концентрации сурьмы отмечаются в глинистых сланцах (1,2 г/т), бокситах и фосфоритах (2 г/т) и самые низкие в известняках и песчаниках (0,3 г/т). Повышенные количества сурьмы установлены в золе углей. Сурьма, с одной стороны, в природных соединениях имеет свойства металла и является типичным халькофильным элементом , образуя антимонит . С другой стороны она обладает свойствами металлоида, проявляющимися в образовании различных сульфосолей — бурнонита, буланжерита, тетраэдрита, джемсонита, пираргирита и др. С такими металлами, как медь , мышьяк и палладий , сурьма может давать интерметаллические соединения. Ионный радиус сурьмы Sb 3+ наиболее близок к ионным радиусам мышьяка и висмута , благодаря чему наблюдается изоморфное замещение сурьмы и мышьяка в блёклых рудах и Pb 5 (Sb, As) 2 S 8 и сурьмы и висмута в Pb 6 FeBi 4 Sb 2 S 16 и др. Сурьма в небольших количествах (граммы, десятки, редко сотни г/т) отмечается в галенитах, сфалеритах , висмутинах, реальгарах и других сульфидах . Летучесть сурьмы в ряде её соединений сравнительно невысокая. Наиболее высокой летучестью обладают галогениды сурьмы SbCl 3 . В гипергенных условиях (в приповерхностных слоях и на поверхности) антимонит подвергается окислению примерно по следующей схеме: Sb 2 S 3 + 6O 2 = Sb 2 (SO 4 ) 3 . Возникающий при этом сульфат окиси сурьмы очень неустойчив и быстро гидролизирует, переходя в сурьмяные охры — сервантит Sb 2 O 4 , стибиоконит Sb 2 O 4 • nH 2 O, валентинит Sb 2 O 3 и др. Растворимость в воде довольно низкая (1,3 мг/л), но она значительно возрастает в растворах щелочей и сернистых металлов с образованием тиокислоты типа Na 3 SbS 3 . Содержание в морской воде — 0,5 мкг/л . Главное промышленное значение имеет антимонит Sb 2 S 3 (71,7 % Sb). Сульфосоли тетраэдрит Cu 12 Sb 4 S 13 , бурнонит PbCuSbS 3 , буланжерит Pb 5 Sb 4 S 11 и джемсонит Pb 4 FeSb 6 S 14 имеют небольшое значение.
Генетические группы и промышленные типы месторождений
В низко- и среднетемпературных гидротермальных жилах с рудами серебра, кобальта и никеля, также в сульфидных рудах сложного состава.
Месторождения
Месторождения сурьмы известны в ЮАР , Алжире , Азербайджане , Таджикистане , Болгарии , России , Финляндии , Казахстане , Сербии , Китае , Киргизии .
Производство
По данным исследовательской компании Roskill, в 2010 году 76,75 % мирового первичного производства сурьмы приходилось на Китай (120 462 т, включая официальное и неофициальное производство), второе место по объёмам производства занимала Россия (4,14 %; 6500 т), третье — Мьянма (3,76 %; 5897 т). Среди других крупных производителей — Канада (3,61 %; 5660 т), Таджикистан (3,42 %; 5370 т) и Боливия (3,17 %; 4980 т). Всего в 2010 году в мире было произведено 196 484 тонн сурьмы (из которых вторичное производство составляло 39 540 тонн) .
В 2010 году официальное производство сурьмы в Китае снизилось по сравнению с 2006—2009 годами и в ближайшее время вряд ли увеличится, говорится в отчёте Roskill .
В России крупнейший производитель сурьмы — это холдинг GeoProMining (6500 тонн в 2010 г.), который занимается добычей и обработкой сурьмы на принадлежащих ему производственных комплексах «Сарылах-Сурьма» и «Звезда» в Республике Саха (Якутия) .
Резервы
Согласно статистическим данным Геологической службы США :
Страна | Резервы | % |
---|---|---|
Китай | 950 000 | 51,88 |
Россия | 350 000 | 19,12 |
Боливия | 310 000 | 16,93 |
Таджикистан | 50 000 | 2,73 |
ЮАР | 21 000 | 1,15 |
Другие (Канада/Австралия) | 150 000 | 8,19 |
Всего в мире | 1 831 000 | 100,0 |
Изотопы
Природная сурьма является смесью двух изотопов : ( изотопная распространённость 57,36 %) и (42,64 %). Единственный долгоживущий радионуклид — с периодом полураспада 2,76 года, все остальные изотопы и изомеры сурьмы имеют период полураспада, не превышающий двух месяцев.
Пороговая энергия для реакций с высвобождением нейтрона (первого):
- 121 Sb — 9,248 МэВ,
- 123 Sb — 8,977 МэВ,
- 125 Sb — 8,730 МэВ.
Физические свойства
|
Этот раздел
не завершён
.
|
Полная электронная конфигурация атома сурьмы: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 3
Сурьма в свободном состоянии образует серебристо-белые кристаллы с металлическим блеском, плотность — 6,68 г/см³. Напоминая внешним видом металл, кристаллическая сурьма обладает большей хрупкостью и меньшей тепло- и электропроводностью [ прояснить ] . В отличие от большинства других металлов, при застывании расширяется .
Примесь сурьмы понижает точки плавления и кристаллизации свинца, а сам сплав при отвердении несколько расширяется в объёме. В сравнении со своими гомологами по группе — мышьяком и висмутом, для которых тоже характерно наличие как металлических так и неметаллических свойств, металлические свойства сурьмы слегка преобладают над неметаллическими, у мышьяка свойства металла, у висмута — напротив свойства неметалла — выражены слабо.
Химические свойства
Со многими металлами образует интерметаллические соединения — антимониды . Основные валентные состояния в соединениях: III и V.
Окисляющие концентрированные кислоты активно взаимодействуют с сурьмой.
- серная кислота превращает сурьму в сульфат сурьмы(III) с выделением сернистого газа:
- азотная кислота переводит сурьму в сурьмяную кислоту (условная формула ):
Сурьма растворима в царской водке :
Сурьма легко реагирует с галогенами:
- с иодом в инертной атмосфере при незначительном нагревании:
- с хлором реагирует по-разному, в зависимости от температуры:
Получение
Основной способ получения сурьмы — обжиг сульфидных руд с последующим восстановлением оксида углём :
Применение
Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов, устройств с эффектом Холла . Является компонентом свинцовых сплавов, увеличивающим их твёрдость и механическую прочность. Область применения включает:
- батареи;
- антифрикционные сплавы;
- типографские сплавы;
- стрелковое оружие и трассирующие пули;
- оболочки кабелей;
- спички;
- лекарства, противопротозойные средства;
- пайка — некоторые бессвинцовые припои содержат 5 % Sb;
- использование в линотипных печатных машинах.
Вместе с оловом и медью сурьма образует металлический сплав — баббит (как правило, сплав олова , меди и сурьмы; или свинца , олова, меди и сурьмы; или цинка , сурьмы и свинца, в зависимости от марки и назначения. Баббит содержит твёрдые кубические интерметаллические кристаллы, образованные реакцией сурьмы при сплавлении с другими компонентами, рассеянные в мягком (олово или свинец) металле), обладающий антифрикционными свойствами и использующийся в подшипниках скольжения. Также сурьма добавляется к металлам, предназначенным для тонких отливок.
Соединения сурьмы в форме оксидов, сульфидов, антимоната натрия и трихлорида сурьмы , применяются в производстве огнеупорных соединений, керамических эмалей, стекла, красок и керамических изделий. Триоксид сурьмы является наиболее важным из соединений сурьмы и главным образом используется в огнестойких композициях. Сульфид сурьмы является одним из ингредиентов в спичечных головках.
Природный сульфид сурьмы, стибнит, использовали в библейские времена в медицине и косметике. Стибнит до сих пор используется в некоторых развивающихся странах в качестве лекарства.
Соединения сурьмы, например, меглюмина антимониат (глюкантим) и натрия стибоглюконат (пентостам), применяются в лечении лейшманиоза .
Электроника
Входит в состав некоторых припоев . Также может использоваться в качестве легирующей примеси к полупроводникам (донор электронов для кремния и германия).
Термоэлектрические материалы
Теллурид сурьмы применяется как компонент термоэлектрических сплавов (термо-ЭДС 150—220 мкВ/К) с теллуридом висмута.
Биологическая роль и воздействие на организм
Сурьма токсична . Относится к микроэлементам . Её содержание в организме человека составляет 10 −6 % по массе. Постоянно присутствует в живых организмах, физиологическая и биохимическая роль до конца не выяснена . Сурьма проявляет раздражающее и кумулятивное действие. Накапливается в щитовидной железе , угнетает её функцию и вызывает эндемический зоб . Однако, попадая в желудочно-кишечный тракт , соединения сурьмы не вызывают отравления, так как соли Sb(III) там гидролизуются с образованием малорастворимых продуктов. При этом соединения сурьмы (III) более токсичны, чем сурьмы (V). Пыль и пары Sb вызывают носовые кровотечения, сурьмяную « литейную лихорадку », , поражают кожу, нарушают половые функции. Порог восприятия привкуса в воде — 0,5 мг/л. Смертельная доза для взрослого человека — 100 мг, для детей — 49 мг. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м³, в атмосферном воздухе 0,01 мг/м³. ПДК в почве 4,5 мг/кг. В питьевой воде сурьма относится ко 2-му классу опасности , имеет ПДК 0,005 мг/л , установленную по санитарно-токсикологическому . В природных водах норматив содержания составляет 0,05 мг/л. В сточных промышленных водах, сбрасываемых на очистные сооружения, имеющие биофильтры, содержание сурьмы не должно превышать 0,2 мг/л .
Примечания
- Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. (англ.) // Pure and Applied Chemistry . — 2013. — Vol. 85 , no. 5 . — P. 1047—1078 . — doi : . 5 февраля 2014 года.
- (англ.) . WebElements. Дата обращения: 15 июля 2010. 7 мая 2010 года.
- ↑ Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 475. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8.
- . Дата обращения: 10 августа 2010. 24 июля 2010 года.
- Фасмер М. . — Прогресс. — М. , 1964–1973. — Т. 3. — С. 809. 16 января 2014 года.
- Walde A., Hofmann J. B. Lateinisches etymologisches Wörterbuch. — Heidelberg: Carl Winter’s Universitätsbuchhandlung, 1938. — S. 591.
- Lavoisier, Antoine. (фр.) . — Paris: Cuchet, Libraire, 1789. — С. 192. 15 декабря 2015 года.
- J.P. Riley and Skirrow G. Chemical Oceanography V. I, 1965
- . Дата обращения: 21 сентября 2010. 5 апреля 2011 года.
- . Дата обращения: 21 сентября 2010. 17 августа 2013 года.
- ↑ . Дата обращения: 9 апреля 2012. Архивировано из 18 октября 2012 года.
- . Дата обращения: 9 апреля 2012. Архивировано из 1 мая 2012 года.
- . Дата обращения: 9 апреля 2012. Архивировано из 25 октября 2012 года.
- Глинка Н. Л. «Общая химия», — Л. Химия, 1983г
- Сурьма // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М. : Педагогика , 1990. — С. 235 . — ISBN 5-7155-0292-6 .
- Неорганическая химия: В 3т. /под ред. Ю. Д. Третьякова. Т. 2 : Химия непереходных элементов : учебник для студ. учреждений высш проф. образования/ А. А. Дроздов, В. П. Зломанов, Г. Н. Мазо, Ф. М. Спиридонов — 2-е изд.,перераб. — М. : Издательский центр «Академия», 2011. — 368 с.
- ГН 2.1.5.1315-03 ПДК химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования
- Алексеев А. И. и др. «Критерии качества водных систем», — СПб. ХИМИЗДАТ, 2002г
Ссылки
- 2020-04-08
- 2