Крушение батискафа «Титан»
- 1 year ago
- 0
- 0
Батиска́ф ( Bathyscaphe ) (от греч. βαθύς — глубокий и σκάφος — судно ) — самоходный подводный аппарат для океанографических и других исследований на больших глубинах.
В отличие от других глубоководных обитаемых аппаратов и «классических» подводных лодок , батискафы используют поплавок с бензином для создания положительной плавучести . Поплавок является лёгким корпусом аппарата, под ним закреплен сферический прочный корпус — гондола (аналог батисферы ), в которой в условиях нормального атмосферного давления находятся аппаратура, пульты управления и экипаж. Движется батискаф с помощью гребных винтов , приводимых в движение электромоторами .
Батискафы использовались до 1980-х годов и раньше были единственным средством для достижения рекордных глубин. Затем в глубоководных аппаратах смогли отказаться от громоздкого бензинового поплавка: положительную плавучесть стали создавать за счёт прочного корпуса (теперь достаточно облегчённого) и синтактической пены .
Иногда батискафами ошибочно называют подводные аппараты других типов.
Подводные лодки , построенные по «классической» схеме , имеют ограниченную глубину погружения, обусловленную не только прочностью прочного корпуса (само существование батискафов, способных погружаться на многокилометровые глубины , свидетельствует о том, что создание прочного корпуса не является технической проблемой), а тем, что на подводных лодках вытеснение воды из балластных цистерн производится сжатым воздухом , хранящимся на борту подводной лодки в газовых баллонах высокого давления . Как правило, давление воздуха в газовых баллонах составляет около 150—200 кгс/см 2 . При погружении в морские глубины давление воды возрастает на 1 кгс/см 2 на каждые 10 метров глубины. Таким образом, на глубине 100 м давление составит 10 кгс/см 2 , а на глубине 1500 м — 150 кгс/см 2 . Фактически сжатый воздух, находящийся в типовом газовом баллоне под давлением 150 кгс/см 2 на такой глубине уже не является «сжатым», и вытеснить воду из балластной цистерны уже не может. На глубине 11 тысяч метров (« Бездна Челленджера ») давление воды составляет около 1100 кгс/см 2 , соответственно, воздух в газовых баллонах должен быть сжат до большего значения.
Идея построить глубоководный аппарат, способный достичь предельных океанских глубин, пришла швейцарскому учёному Огюсту Пиккару в довоенные годы при работе над первым в мире стратостатом FNRS-1 . Огюст Пиккар предложил построить судно , устроенное по принципу аэростата , стратостата или дирижабля . Вместо баллона, заполненного водородом или гелием , подводный аппарат должен иметь поплавок, заполненный каким-нибудь веществом с плотностью , меньшей, чем плотность воды . Вещество при большом давлении не должно изменять свои физические и химические свойства, поплавок должен нести груз и при этом поддерживать положительную плавучесть судна. Погружение аппарата, получившего название батискаф , происходит с помощью тяжёлого груза (балласта), для всплытия на поверхность балласт сбрасывается. Первый батискаф FNRS-2 был построен Огюстом Пиккаром в 1948 году .
Отвечая на вопрос, почему после стратостата он стал конструировать батискаф, Огюст Пиккар отмечал, что
эти аппараты чрезвычайно сходны между собой, хотя их назначение противоположно.
Со свойственным ему чувством юмора он пояснял:
Возможно, судьбе было угодно создать это сходство именно для того, чтобы работать над созданием обоих аппаратов мог один учёный…
—
Конечно, конструирование батискафа — не забава для детей. Необходимо решить бесконечное множество сложнейших задач. Но ведь не бывает непреодолимых трудностей!
— Огюст Пикар
|
Батискаф состоит из двух основных частей: лёгкого корпуса — поплавка и прочного корпуса — гондолы.
Поплавок (лёгкий корпус) имеет такое же значение, как спасательный круг для тонущего человека или как баллон с водородом или гелием у дирижабля . В отсеках поплавка находится вещество легче воды, сообщающее положительную плавучесть судну. На батискафах середины XX века использовался бензин , имеющий плотность около 700 кг/м 3 . Один кубический метр бензина способен удерживать на плаву груз весом около 300 кг. Чтобы выровнять гидростатическое давление внутри поплавка с давлением внешней среды — бензин отделён от воды эластичной перегородкой, позволяющей бензину сжиматься. Вероятно, в середине XX века кораблестроители не смогли найти вещество лучше бензина, а в батискафе Deepsea Challenger (2012 г.) применён композитный материал с содержащимися в нём полыми стеклянными сферами .
Экипаж, системы жизнеобеспечения , приборы управления и научные приборы размещены в гондоле (прочном корпусе). Гондолы всех существующих батискафов представляют собой сферу, так как сфера — геометрическое тело , имеющее наибольший объём при наименьшей площади поверхности . Полая сфера при равной толщине стенок (в сравнении, например, с параллелепипедом или цилиндром равного объёма) будет иметь меньшую массу . Также сфера обладает абсолютной симметрией , для сферического прочного корпуса легче всего сделать инженерные расчёты . Так как на больших глубинах огромное давление воды сжимает гондолу, её наружный и внутренний диаметр несколько уменьшается. Поэтому гондола крепится к поплавку не жёстко, а с возможностью совершать некоторое смещение. Вся аппаратура внутри гондолы не прикреплена к стенкам, а смонтирована на раме, позволяющей стенкам беспрепятственно сближаться.
С целью увеличения обитаемого объёма увеличивать диаметр гондолы нерационально, так как это ведёт к увеличению общей высоты глубоководного аппарата. Перспективным направлением является строительство батискафов с полисферическим (составным из нескольких сфер) прочным корпусом.
Гондолы батискафов середины XX века изготавливались из прочной легированной стали . Перспективно применять более лёгкие материалы для прочных корпусов подводных аппаратов. Пригодность материала для постройки глубоководного аппарата определяется отношением допускаемого механического напряжения к удельному весу ( удельная прочность ); чем больше эта величина, тем глубже может погружаться аппарат. Поэтому несколько менее прочные, но зато гораздо более лёгкие, чем сталь , материалы, имеют преимущество перед сталью. К таким материалам относятся титановые и алюминиевые сплавы , а также пластмассы . Эти материалы не подвержены коррозии в морской воде .
Материал |
Удельный вес,
г/см 3 |
Допускаемое напряжение при растяжении,
кг/см 2 |
Удельная прочность при растяжении,
кг/см 2 |
---|---|---|---|
Прочная сталь | 7,85 | 10 000 | 1 290 |
Титановый сплав | 4,53 | 6 000 | 1 310 |
Алюминиевый сплав | 2,8 | 4 300 | 1 520 |
Пластмасса | 1,7 | 3 000 | 1 770 |
Электропитание батискаф получает от аккумуляторов . Изолирующая жидкость окружает аккумуляторные банки и электролит , на неё через мембрану передаётся давление забортной воды. Аккумуляторы не разрушаются на огромной глубине.
Батискаф приводится в движение электрическими двигателями , движители — гребные винты . Электродвигатели защищаются таким же способом, как и аккумуляторные батареи. Если у батискафа отсутствует судовой руль — тогда поворот производился включением только одного двигателя, разворот почти на месте — работой двигателей в разные стороны.
Скорость спуска и подъём батискафа на поверхность регулируется сбрасыванием основного балласта в виде стальной или чугунной дроби , находящейся в воронкообразных бункерах. В самом узком месте воронки стоят электромагниты , при протекании электрического тока под действием магнитного поля дробь как бы «затвердевает», при отключении тока она высыпается.
Система аварийного всплытия представляет собой аварийный балласт, подвешенный на раскрывающихся замках. От раскрытия замки удерживаются электромагнитами, для сброса достаточно отключить электрический ток. Аналогичное крепление имеют аккумуляторные батареи и гайдроп — длинный расплетённый свободно свисающий стальной канат или якорная цепь . Гайдроп предназначен для уменьшения скорости спуска (вплоть до полной остановки) непосредственно у морского дна. Если аккумуляторы разряжаются — автоматически происходил сброс балласта, аккумуляторов и гайдропа, батискаф начинает подъём на поверхность.
По наблюдениям Жака Пиккара и Дона Уолша (экипаж батискафа «Триест» , погружение 23 января 1960 года на дно Марианской впадины ), на глубине 10 км объём бензина в поплавке уменьшился на 30% (то есть на 3% на каждый километр спуска). Также следует принять во внимание уменьшение объёма бензина вследствие его охлаждения.
Название |
Спуск
на воду |
Глубина | Страна | Комментарии и источники |
---|---|---|---|---|
FNRS-2 | 1948 | 4 000 м | Бельгия | Перестроен в FNRS-3 |
FNRS-3 | 1953 | 4 000 м | Франция | |
Триест | 1953 | 11 000 м | Италия , США | Глубина дана для гондолы «Крупп»; гондола «Терни» использована в 1-й версии «Триеста-2» |
Архимед | 1961 | 11 000 м | Франция | |
1964 | 6 000 м | США | Сильно изменён в 1966 году и глубина дана для новой гондолы; | |
1979 | 6 000 м | СССР | Только испытания, не принят ВМФ; |
Обитаемые подводные аппараты , не являющиеся батискафами, называют беспоплавковыми . Такие аппараты не имеют выраженного поплавка и создают плавучесть в том числе за счёт прочного корпуса . Это условное название, так как в глубоководных аппаратах от поплавка полностью не отказываются, но вместо бензина используют более совершенную синтактическую пену . Например, аппараты « Мир » имеют 8 кубических метров синтактической пены, а « Deepsea Challenger » заполнен ей на 70 %.