Interested Article - Квантовый гармонический осциллятор

Ква́нтовый гармони́ческий осцилля́тор — физическая модель в квантовой механике , представляющая собой параболическую потенциальную яму для частицы массой и являющаяся аналогом простого гармонического осциллятора . При анализе поведения данной системы рассматриваются не силы, действующие на частицу, а гамильтониан , то есть полная энергия осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию .

Задача о гармоническом осцилляторе в координатном представлении

Волновые функции в координатном представлении первых восьми состояний, . По горизонтали отложена координата , по вертикали — значение волновой функции . Графики не нормированы.

Гамильтониан квантового осциллятора массы m, собственная частота которого ω, выглядит так:

В координатном представлении , . Задача об отыскании уровней энергии гармонического осциллятора сводится к нахождению таких чисел E при которых дифференциальное уравнение в частных производных

имеет решение в классе квадратично интегрируемых функций .

Для

решение имеет вид:

функции полиномы Эрмита :

Данный спектр значений E заслуживает внимания по двум причинам: во-первых, уровни энергии дискретны и равноотстоящи (эквидистантны) , то есть разница в энергии между двумя соседними уровнями постоянна и равна ; во-вторых, наименьшее значение энергии равно . Этот уровень называют основным , вакуумом , или уровнем нулевых колебаний .

Операторы рождения и уничтожения

Гораздо проще спектр гармонического осциллятора можно получить с помощью операторов рождения и уничтожения , сопряжённых друг другу.

Оператор рождения — , оператор уничтожения — , их коммутатор равен

С помощью операторов рождения и уничтожения гамильтониан квантового осциллятора записывается в компактном виде:

где — оператор номера уровня (чисел заполнения). Собственные вектора такого гамильтониана являются фоковскими состояниями , а представление решения задачи в таком виде называется «представлением числа частиц».

Ангармонический осциллятор

Под ангармоническим осциллятором понимают осциллятор с неквадратичной зависимостью потенциальной энергии от координаты. Простейшим приближением ангармонического осциллятора является приближение потенциальной энергии до третьего слагаемого в ряде Тейлора :

Точное решение задачи о спектре энергии такого осциллятора довольно трудоёмкое, однако можно вычислить поправки к энергии, если предположить, что кубическое слагаемое мало по сравнению с квадратичным, и воспользоваться теорией возмущений .

В представлении операторов рождения и уничтожения (представление вторичного квантования) кубическое слагаемое равно

Этот оператор имеет нулевые диагональные элементы, а потому первая поправка теории возмущений отсутствует. Вторая поправка к энергии произвольного невакуумного состояния равна

Многочастичный квантовый осциллятор

В простейшем случае взаимодействия нескольких частиц можно применить модель многочастичного квантового осциллятора, подразумевая взаимодействие соседних частиц по квадратичному закону:

Здесь под и подразумеваются отклонение от положения равновесия и импульс -той частицы. Суммирование ведётся только по соседним частицам.

Такая модель приводит к теоретическому обоснованию фононов Бозе - квазичастиц , наблюдающихся в твёрдом теле.

Переходы под влиянием внешней силы

Под влиянием внешней силы квантовый осциллятор может переходить с одного уровня энергии ( ) на другой ( ). Вероятность этого перехода для осциллятора без затухания даётся формулой:

,

где функция определяется как:

,

а полиномы Лагерра .

См. также

Литература

Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 3-е, переработанное и дополненное. — М. : Наука , 1974 . — 752 с. — («Теоретическая физика», том III).

Источник —

Same as Квантовый гармонический осциллятор