Interested Article - Термодинамика атмосферы
- 2020-05-06
- 1
Термодина́мика атмосфе́ры — раздел физики атмосферы , посвящённый изучению процессов передачи и превращения тепла в работу (и наоборот) в атмосфере Земли в связи с изучением физики погодных явлений или климата на основе фундаментальных законов классической термодинамики . Исследования в этой области необходимы для понимания свойств атмосферной турбулентности , конвекции , динамики планетарного пограничного слоя и его вертикальной устойчивости. Термодинамика атмосферы служит основой для моделирования процессов в облаках , используется при параметризации конвекции в численных моделях динамики атмосферы, прогноза погоды и теории климата. Термодинамические диаграммы применяются в качестве инструмента прогнозирования развития шторма. Термодинамика атмосферы является составной частью курса динамической метеорологии .
История
- В 1782 году Шарль изобрёл воздушный шар, наполненный водородом, и применил его для измерения температуры и давления в атмосфере над Парижем. Открыл закон Шарля .
- В 1801 году Дальтон открыл закон сложения парциальных давлений , носящий его имя.
- В 1805 году Лаплас открыл закон изменения давления с высотой.
- В 1823 году Пуассон сформулировал уравнение, носящее его имя, связывающее изменение температуры с изменением давления в адиабатическом процессе.
- В 1841 году Джеймс Поллард Эспи выявил важную роль выделения скрытой теплоты парообразования в поддержании энергии циклонов, предложил теорию образования фёна.
- В 1860 году Томсон дал теорию влажноадиабатического процесса.
- В 1884 году Герц предложил первую аэрологическую диаграмму ( эмаграмму ) .
- В 1888 году Бецольд публикует первую монографию , посвящённую термодинамике атмосферы, тем самым впервые определил этот раздел физики, как предмет самостоятельного исследования.
- В 1889 году Гельмгольц и Бецольд ввели понятие потенциальной температуры .
- В 1893 году Асман сконструировал первый аэрозонд, измеряющий температуру, давление и влажность.
- В 1930 году Молчанов запустил первый в мире радиозонд .
Термодинамика ячейки Хэдли
Физические процессы в ячейке Хэдли могут рассматриваться как результат работы атмосферной тепловой машины . Циркуляция в ячейке является результатом подъёма тёплого и влажного воздуха в экваториальной области с его охлаждением и опусканием в субтропиках. Оценка термодинамического КПД такой тепловой машины в период с 1979 по 2010 годы оказалась примерно постоянной, в среднем равной 2,6 %. В то время как мощность, генерируемая ячейкой Хэдли, за тот же промежуток времени росла в среднем на 0,54 ТВт в год, что явилось результатом наблюдаемой тенденции изменения температуры поверхности тропических морей.
Термодинамика тропического циклона
Термодинамические процессы играют определяющую роль в развитии тропического циклона (урагана). Обычно, развитие урагана представляется как результат работы атмосферной тепловой машины, в которой воздух нагревается за счёт теплообмена с поверхностью океана, имеющей температуру около 300 К, поднимается в результате конвекции и охлаждается у тропопаузы , которая имеет температуру около 200 К. При этом важную роль играют фазовые переходы воды. На поверхности океана происходит интенсивное испарение. Тёплый, восходящий воздух при его подъёме расширяется и охлаждается. Достигнув точки росы, водяной пар конденсируется, формируя облака и ливневые осадки. Выделение скрытого тепла при конденсации обеспечивает приток энергии, поддерживающий механическую энергию урагана.
Термодинамика пограничного слоя
Термические условия в пограничном слое атмосферы оказывают существенное влияние на его динамику и являются причиной его временно́й и пространственной изменчивости. Теоретические модели, использующие уравнение теплопроводности (уравнение притока тепла), уравнение состояния идеального газа , уравнение диффузии водяного пара лежат в основе теории анализа процессов, протекающих в пограничном слое , в мезометеорологии . Теория (по крайней мере качественно) моделирует такие явления, как суточный ход параметров состояния атмосферы, бризы , влияние неоднородности подстилающей поверхности , орографические эффекты ( горно-долинные ветры , ледниковые ветры , местные ветры : фён , бора , и др.), адвективные туманы . Исследования влияния термической стратификации на турбулентные потоки используются при численном моделировании процесса рассеяния примесей в атмосфере .
См. также
Примечания
- Дата обращения: 13 ноября 2016. 14 ноября 2016 года.
- Hertz, H. Graphische Methode zur Bestimmung der adiabatischen Zustandsanderungen feuchter Luft.// Meteor. Ztschr., 1884, Vol. 1, pp. 421—431. English translation by Abbe, C. — The mechanics of the earth’s atmosphere // Smithsonian Miscellaneous Collections, 1893, 843, pp. 198—211
- Bezold W. von Zur Thermodynamik der Atmosphäre. Pts. I, II. Sitz. K. Preuss. Akad. Wissensch. Berlin, 1888, pp. 485—522, 1189—1206; Gesammelte Abhandlugen, pp. 91-144. English translation Abbe, C. The mechanics of the earth’s atmosphere. Smithsonian Miscellaneous Collections, no 843,1893, 212—242.
- Junling Huang; Michael B. McElroy. (англ.) // Vol. 27 , no. 7 . — P. 2656—2666 . — doi : . — . 30 марта 2015 года. : journal. — 2014. —
- Лайхтман Д. Л. Физика пограничного слоя атмосферы. Л.: Гидрометеорологическое издательство.—1970.—342 с.
- Гутман Л. Н. Введение в нелинейную теорию мезометеорологических процессов. Л.: Гидрометеорологическое издательство.—1969.—293 с.
- Берлянд М. Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы. Л.: Гидрометеорологическое издательство.—1975.—448 с.
Литература
- Вегенер А. Термодинамика атмосферы. ОНТИ.—1935.—275 с.
- Славин И. А. Термодинамика гроз. Л.: ЛВИКА им. А. Ф. Можайского.—1969.—318 с.
- Доронин Ю. П. Основы термодинамики атмосферы и океана. Л.: ЛГМИ.—1973.—92 с.
- Лоренц Э. Н. Природа и теория общей циркуляции атмосферы. Л.: Гидрометеоиздат.—1979.
- 2020-05-06
- 1