Ядерное горение дейтерия
- 1 year ago
- 0
- 0
Горе́ние кре́мния — последовательность термоядерных реакций, протекающая в недрах массивных звёзд (минимум 8—11 солнечных масс ), в ходе которой происходит превращение ядер кремния в ядра более тяжёлых элементов. Для данного процесса необходимо наличие высокой температуры ( 2,7—3,5⋅10 9 K , что соответствует кинетической энергии 230—300 кэВ) и плотности ( 10 5 — 10 6 г/см³ ). Стадия горения кремния следует за стадиями горения водорода, гелия, углерода, неона и кислорода; она является финальной стадией эволюции звезды за счёт термоядерных процессов. После её окончания в ядре звезды больше не остаётся доступных термоядерных источников энергии, поскольку в результате горения кремния образуются ядра группы железа, которые имеют максимальную энергию связи на один нуклон и более неспособны к термоядерным экзотермическим реакциям. Прекращение энерговыделения приводит к потере способности звёздного ядра противодействовать давлению внешних слоёв, к катастрофическому коллапсу звезды и вспышке сверхновой типа II .
За счёт высокой температуры происходит частичная фотодезинтеграция ядер кремния в реакциях ( γ , α ) , (γ, p ) , (γ, n ) . Образовавшиеся в результате альфа-частицы, протоны и нейтроны начинают реагировать с оставшимися ядрами кремния. В результате множества реакций образуются более тяжёлые элементы, в том числе элементы около железа. Примерами таких реакций, например, являются:
Прямая реакция типа «кремний+кремний»
маловероятна из-за большого кулоновского барьера.
Горение кремния это конечная стадия термоядерного синтеза в ядрах звёзд, самая быстрая фаза звездной эволюции. Для массивных звезд (более 25 солнечных масс) длительность горения кремния оценивается всего в 1 день. Горение более тяжёлых элементов не происходит, поскольку при таких реакциях энергия уже не выделяется, а поглощается.
Такая малая продолжительность ядерных реакций с тяжёлыми элементами объясняется не только уменьшением энергетического выхода в пересчёте на нуклон. Сказывается общая большая светимость массивных звёзд, в результате чего излучаемая энергия на единицу массы на порядки выше, чем у карликов типа Солнца. Однако основным фактором сокращения времени ядерных реакций с участием тяжёлых элементов является так называемое нейтринное охлаждение : при температурах более миллиарда кельвинов столкновение гамма-квантов с ядрами может порождать пары нейтрино-антинейтрино. С дальнейшим ростом температур доля энергии, уносимая нейтринными парами всё больше растёт, причём для нейтрино ядро звезды прозрачно (они беспрепятственно уносят энергию), ядро всё больше сжимается, и последние происходящие ядерные реакции могут происходить в форме взрыва .