Молекулярно-кинетическая теория
- 1 year ago
- 0
- 0
Виды энергии : | ||
---|---|---|
Механическая |
Потенциальная
|
|
‹ ♦ › | Внутренняя | |
Электромагнитная |
Электрическая
Магнитная |
|
Химическая | ||
Ядерная | ||
Гравитационная | ||
Вакуума | ||
Гипотетические: | ||
Тёмная | ||
См. также: Закон сохранения энергии |
Кинети́ческая эне́ргия — скалярная функция , являющаяся мерой движения материальных точек , образующих рассматриваемую механическую систему , и зависящая только от масс и модулей скоростей этих точек . Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии . Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как
где индекс нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения . Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя ; таким образом, кинетическая энергия — часть полной энергии , обусловленная движением . Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: , , и другие. В системе СИ она измеряется в джоулях (Дж), в СГС — в эргах .
Упрощённо, кинетическая энергия — это работа, которую необходимо совершить, чтобы тело массой разогнать из состояния покоя до скорости . Либо, наоборот, это работа, которую может совершить, останавливаясь, тело массой , обладающее начальной скоростью .
Прилагательное «кинетический» происходит от греческого слова κίνησις (kinesis, «движение»). Дихотомия между кинетической энергией и потенциальной энергией восходит к аристотелевским концепциям .
Принцип классической механики , согласно которому E ∝ mv 2 /2 , был впервые разработан Готфридом Лейбницем и Иоганном Бернулли , описавшими кинетическую энергию как живую силу ( лат. vis viva ) . Вильгельм Гравезанд из Нидерландов предоставил экспериментальные доказательства этой связи. Сбрасывая грузы с разной высоты на глиняный блок, он определил, что глубина их проникновения пропорциональна квадрату скорости удара. Эмили дю Шатле осознала значение данного эксперимента и опубликовала объяснение .
Понятия «кинетическая энергия» и « работа » в их нынешнем научном значении восходят к середине XIX века. В 1829 году Гаспар-Гюстав Кориолис опубликовал статью Du Calcul de l’Effet des Machines , в которой излагалась математика того, что по сути является кинетической энергией. Создание и введение в оборот самого термина «кинетическая энергия» приписывают Уильяму Томсону (лорду Кельвину) c 1849—1851 гг. . Ренкин , который ввел термин «потенциальная энергия» в 1853 году , позже цитировал У. Томсона и П. Тэйта с заменой слова «кинетическая» на «фактическая» .
По определению, кинетической энергией материальной точки массой называется величина
при этом предполагается, что скорость точки всегда значительно меньше скорости света . С использованием понятия импульса ( ) данное выражение примет вид .
Если — равнодействующая всех сил , приложенных к точке, выражение второго закона Ньютона запишется как . Скалярно умножив его на перемещение материальной точки и учитывая, что , причём , получим .
Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина остаётся постоянной, то есть кинетическая энергия является интегралом движения .
При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига , в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения :
Здесь — масса тела, — скорость центра масс , и — угловая скорость тела и его момент инерции относительно мгновенной оси , проходящей через центр масс .
В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа . Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью , то есть плотность кинетической энергии (Дж/м 3 ), запишется:
где по повторяющемуся индексу , означающему соответствующую проекцию скорости, предполагается суммирование.
Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса , получаются путём осреднения уравнений Навье-Стокса . Если, в согласии с методом Рейнольдса, представить , , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:
где — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, — плотность кинетической энергии, связанной с неупорядоченным движением (« плотность кинетической энергии турбулентности » , часто называемой просто « энергией турбулентности »), а — плотность кинетической энергии, связанная с турбулентным потоком вещества ( — плотность флуктуационного потока массы, или « плотность турбулентного импульса »). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея : кинетическая энергия упорядоченного движения зависит от выбора системы координат, в то время как кинетическая энергия турбулентности от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии .
Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны , порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.
В квантовой механике кинетическая энергия представляет собой оператор , записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором ( , — мнимая единица ):
где — редуцированная постоянная Планка , — оператор набла , — оператор Лапласа . Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера .
Если в задаче допускается движение со скоростями, близкими к скорости света , кинетическая энергия материальной точки определяется как:
Кинетическая энергия в этой формуле может быть разложена в ряд Маклорена по степеням :
При скоростях много меньших скорости света ( ) пренебрегаем членами разложения с высшими степенями и выражение для переходит в классическую формулу .
Как и в классическом случае, имеет место соотношение , получаемое посредством умножения на выражения второго закона Ньютона (в виде ).
Релятивистское соотношение между кинетической энергией и импульсом p записывается в виде
Разложив это выражение по степеням получаем
первый член которого равен нерелятивистскому выражению кинетической энергии через импульс, а последующие члены — релятивистские поправки к этому выражению, которые малы при
Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии :
Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения между состояниями 1 и 2).
Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия . Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.
То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул , и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана .