Растровый электронный микроскоп
- 1 year ago
- 0
- 0
Электро́нный микроско́п (ЭМ) — прибор ( микроскоп ), позволяющий получать изображение объектов с максимальным увеличением до 10 6 раз, благодаря использованию, в отличие от оптического микроскопа , вместо светового потока, пучка электронов с энергиями 200 эВ — 400 кэВ и более (например, просвечивающие электронные микроскопы высокого разрешения с ускоряющим напряжением 1 М В ).
Длина волны де Бройля электронов, ускоренных в электрическом поле с разностью потенциалов 1000 В, равна 0,4 Å , что много меньше длины волны видимого света . Вследствие этого, разрешающая способность электронного микроскопа в более чем 10000 раз может превосходить разрешение традиционного оптического микроскопа . Для получения изображения в электронном микроскопе используются специальные магнитные линзы , управляющие движением электронов в колонне прибора при помощи электромагнитного поля .
Основные вехи в истории электронной микроскопии :
1897 — Томсон (J. J. Thomson) открыл электрон .
1924 — Де Бройль (de Broglie) предположил существование у электрона волновых свойств
1926 — Буш (Busch) продемонстрировал возможность фокусировки электронного потока с помощью магнитных линз цилиндрической формы. Это положило начало ЭМ.
1931 — Р. Руденберг получил патент на просвечивающий ЭМ ; в 1932 году М. Кнолль и Эрнст Руска построили первый прототип современного прибора. Эта работа Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру . Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов, и тогда же появился первый коммерческий прибор, построенный фирмой Siemens .
1935 — Кнолль (Knoll) описал принцип работы сканирующего электронного микроскопа. Позднее, в 1938, Ардене (Von Ardene) создал прототип такого микроскопа.
1939 — Сименс (Siemens) создал первый просвечивающий электронный микроскоп.
Конец 1930-х – начало 1940-х годов — появились первые растровые электронные микроскопы, формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-х годах, когда они достигли значительного технического совершенства.
1944 — Уильямс и Виков (Williams, Wyckoff) создали метод оттенения металлом.
1945 — Портер , Клод и Фуллам (Porter, Claude, Fullam) применили электронную микроскопию в цитологии, изучая фиксированные клетки и ткани после окрашивания.
1948 — Пиз и Бэйкер (Pease, Baker) получили тончайшие срезы био-образцов – около 0,1-0,2 мкм.
1952 — Паладе , Портер и Шестранд (Palade, Porter, Sjostrand) создали новые способы фиксации и приготовления тонких срезов, что впервые позволило увидеть многие внутриклеточные структуры. В числе первых эти методы применил Хаксли (Н. Е. Xuxley) , чтобы получить доказательства в пользу гипотезы "скользящих нитей", которая описывает механизм сокращения мышечной ткани. Хаксли продемонстрировал перекрывающиеся сети белковых филаментов миоцитов .
1953 — Портер и Блюм (Porter, Blum) спроектировали ультра микротом .
1956 — Глауэрт (Glauert) вместе с сотрудниками применили смолу в качестве средства фиксации микропрепаратов. В 1961 Люфт (Luft) предложил использовать смолу .
1957 — Робертсон (Robertson) описал трехслойное строение клеточной мембраны.
1957 — Мур и Мюреталер (Moor, Muhlethaler) улучшили метод "замораживания-скалывания" Стира (Steere). В 1966 г. Брентон (Branton) применил этот метод для изучения внутреннего строения мембран клеток.
1959 — Бреннер и Хорн (Bretftier, Home) улучшили метод негативного контрастирования Холла (Hall, 1955), что привело к распространению его использования.
1959 — Сингер (Singer) применил ферритин-ассоциированные антитела для детекции внутриклеточных молекул методом ЭМ.
1963 — Сабатини , Бенш и Баррнетт (Sabatini, Bensch, Barrnett) применили и OsO4 для фиксации микропрепарата при ЭМ.
1965 — коммерциализировала сканирующий ЭМ.
1968 — Де Розьер и Клуг (de Rosier, Klug) описали метод определения трехмерных структур по электронным микрофотографиям
1975 — Хендерсон и Унвин (Henderson, Unwin) впервые определили тонкое строение мембранного белка, используя реконструкцию
электронных микрофотографий неокрашенных белков на компьютере
Значительным скачком (в 1970-х годах) в развитии было использование вместо термоэмиссионных катодов — катодов Шоттки и катодов с холодной автоэмиссией, однако их применение требует значительно большего вакуума .
1979 — Хейзер , Рис (Heuser, Reese) с коллегами разработал метод глубокого травления, обладающий высокой разрешающей способностью, который использовал метод сверхбыстрой заморозки.
Конец 1990-х – начало 2000-х — компьютеризация и использование ПЗС-детекторов значительно упростили получение изображений в цифровом виде.
В последнее десятилетие в современных передовых просвечивающих электронных микроскопах используются корректоры сферических и хроматических аберраций, вносящих основные искажения в получаемое изображение. Однако их применение может значительно усложнять использование прибора.
2018 — американским учёным удалось добиться разрешения электронного микроскопа в 3,9 *10 −11 м .
В просвечивающем электронном микроскопе (ПЭМ) для формирования изображения используется высокоэнергетический электронный пучок. Электронный пучок создается посредством катода (вольфрамового, LaB 6 , Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до 80—200 кэВ (используются различные напряжения от 20 кВ до 1 МВ), фокусируется системой магнитных линз (иногда электростатических линз ), проходит через образец так, что часть электронов рассеивается на образце, а часть — нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фотопластинке или ПЗС -камере.
Разрешение ПЭМ лимитируется в основном сферической аберрацией . Некоторые современные ПЭМ имеют корректоры сферической аберрации .
Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100 нм) и неустойчивость (разложение) образцов под пучком.
Один из типов просвечивающей электронной микроскопии (ПЭМ); однако, есть приборы, работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.
В основе лежит телевизионный принцип развёртки тонкого пучка электронов по поверхности образца.
В своих наиболее распространенных конфигурациях, электронные микроскопы дают изображения с отдельным значением яркости на каждый пиксель , с результатами, как правило, изображенными в оттенках серого . Однако, часто эти изображения затем раскрашены посредством использования программного обеспечения, или просто ручным редактированием с помощью графического редактора. Это делается обычно для эстетического эффекта или для уточнения структуры и, как правило, не добавляет информацию об образце.
В некоторых конфигурациях о свойствах образца можно собрать больше информации на каждый пиксель, благодаря использованию нескольких детекторов. В СЭМ атрибуты топографии и рельефа материала могут быть получены с помощью пары электронных детекторов отражения и такие атрибуты могут быть наложены в единое цветное изображение, с присвоением разных первичных цветов для каждого атрибута. По аналогии, сочетаниям отраженного и вторичного электронного сигнала различные цвета могут быть присвоены и наложены на один цветной микрограф, одновременно показывающий свойства образца.
Некоторые типы детекторов, используемых в СЭМ, имеют аналитические возможности и могут обеспечить несколько элементов данных на каждом пикселе. Примерами являются детекторы , используемые в элементном анализе, и системы катодолюминесцентных микроскопов, которые анализируют интенсивность и спектр электронно-стимулированной люминесценции (например, в геологических образцах). В системах СЭМ использование этих детекторов является общим для цветового кода сигналов и накладывают их в единое цветное изображение, так что различия в распределении различных компонентов образца можно ясно видеть и сравнивать. Дополнительно, стандарт вторичных электронных изображений может быть объединен с одним или более композиционными каналами, так что можно сравнить структуру и состав образца. Такие изображения могут быть сделаны с сохранением полной целостности исходного сигнала, который не изменяется в любом случае.
Полупроводники и хранение данных
Биология и биологические науки
|
Научные исследования
Промышленность
|
Электронные микроскопы дороги в производстве и обслуживании, но общая и эксплуатационная стоимость конфокального оптического микроскопа сравнима с базовыми электронными микроскопами. Микроскопы, направленные на достижение высоких разрешений, должны быть размещены в устойчивых зданиях (иногда под землёй) и без внешних электромагнитных полей. Образцы в основном должны рассматриваться в вакууме , так как молекулы, составляющие воздух, будут рассеивать электроны.
Сканирующие электронные микроскопы, работающие в обычном высоковакуумном режиме, как правило, изображают проводящий образец; Поэтому непроводящие материалы требуют проводящее покрытие (золото / палладий, сплав углерода, осмий, и т. д.); режим низкого напряжения современных микроскопов делает возможным наблюдение непроводящих образцов без покрытия. Непроводящие материалы могут быть изображены также переменным давлением (или окружающей средой) сканирующего электронного микроскопа [ как? ] .
|
|
|
В статье
не хватает
ссылок на источники
(см.
рекомендации по поиску
).
|
|
В другом языковом разделе
есть более полная статья
(англ.)
.
|