Interested Article - DNase-seq

DNase-Seq или определение чувствительности к ДНКазе — это молекулярно-биологический метод, наряду с FAIRE-Seq , используемый для определения положения регуляторных регионов. Метод основан на секвенировании областей, гиперчувствительных к расщеплению ДНКазой I. DNase-Seq используется для определения глобального распределения сайтов расщепления ДНКазой I и, следовательно, открытого хроматина, в котором часто и локализованы регуляторные элементы. DNase-Seq является особенно привлекательным для идентификации регуляторных элементов, так как не полагается на наличие или специфичность антител.

Теоретическое обоснование

Упаковка ДНК в нуклеосомы выполняет структурирующую роль и является важным для транскрипции фактором, определяющим способность ДНК связываться с белками. Это облегчает репликацию и координацию активности генов .

Говоря о доступности хроматина, выделяют две его конформации — открытую и закрытую. Закрытой конформации соответствует ДНК, упакованная в нуклеосомы и структуры высших порядков. Ранние исследования показали, что участки ДНК, не входящие в нуклеосомы (открытая конформация) сверхчувствительны к ДНКазе I и отвечают за активацию генов . За последние 25 лет обычным саузерн-блоттингом были определены сотни сверхчувствительных сайтов. Картирование этих сайтов внесло существенный вклад в идентификацию различных видов регуляторных элементов генома — промоторов, энхансеров, сайленсеров, инсуляторов. Идентификация активных элементов регуляции генов необходима для понимания регуляции биологических процессов на уровне транскрипции . К таким процессам относятся дифференцировка, развитие, пролиферация клеток и их ответ на воздействия окружающей среды.

На селективном разрезании ДНКазой I этих важных для регуляции биологических процессов участков, не входящих в состав нуклеосом, основан метод DNase-seq, впервые описанный в 2008 году.

Процедура

Основные реагенты
  • однородная культура клеток
  • дезоксинуклеозидтрифосфаты
  • стрептавидиновые зерна
  • линкеры — отожженные олигонуклеотидные последовательности
  • праймер для секвенирования
  • праймеры для ПЦР
  • ДНК-лигаза Т4
  • ДНК-полимераза Т4
Ход работы
  1. Выделение ядер
    • После центрифугирования и промывания буфером порядка 50 млн клеток, полученную суспензию тщательно перемешивают с лизирующим буфером.
    • Окрашивают Trypan синим для проверки качества лизиса. Если лизис прошёл успешно, должно окраситься 99 % клеток.
    • Центрифугируют для осаждения ядер и полностью удаляют супернатант.
  2. Обработка ДНКазой I и заключение ДНК в агарозу
  3. Идентификация продуктов обработки ДНКазой с помощью электрофореза в PFG (pulse field gel).
  4. Затупление образующихся выступающих концов
  5. Создание библиотеки. Производится отжиг двух пар олигонуклеотидных последовательностей для создания двух линкеров. Затем с одним из линкеров лигируют концы, обработанные ДНКазой. После этого нелигированные линкеры следует отделить от лигированной ДНК и изолировать их друг от друга.

Затем лигированную ДНК обрабатывают эндонуклеазой рестрикции MmeI, в результате чего образуются дефосфорилированные концы. Их необходимо лигировать со вторым (фосфорилированным) линкером.

Таким образом, получают продукт DNase-seq. Его амплифицируют и проводят электрофорез с продуктом амплификации.

После картирования ридов, фоновый шум в результате случайного переваривания ДНКазой I (который обычно намного слабее подлинного) удаляется путём сравнения сигнала в данной позиции с большим фланкирующим регионом и ожидаемым фоновым сигналом. Резкие границы между соседними DHSs сглаживаются в программах, например, F-seq , на основе таких алгоритмов как HotSpot, оптимизированных для работы с данными полученными по разным протоколам .

Примечания
  • Метод работает только для свежеприготовленных образцов и исключает использование замороженных или каким-либо другим способом фиксированных образцов.
  • Время лизиса и концентрации детергента должны быть оптимизированы для достижения максимальной эффективности лизиса и сохранения большинства ядер интактными. В случае успешного лизиса количество полученных ядер по сравнению с исходным количеством клеток должно быть в пределах 80-100 %.
  • Скрининг по размеру до и во время строительства библиотек напрямую влияет на представление сильных и слабых сайтов ДНКазы I.
  • Контроль эффективности обогащения и специфичности ДНКазы I с помощью количественной ПЦР или Саузерн блоттинга важен для улучшения получаемых данных. Основываясь на этих данных можно регулировать концентрацию ДНКазы I для достижения оптимального обогащения.
Возможные проблемы и пути их решения
  • Согласно методике рекомендуется анализировать 50 млн клеток. Как поступить, если клеток не хватает?
    • Эксперименты проводились и с меньшим количеством клеток. Можно пересчитать концентрации и объёмы пропорционально количеству клеток, однако вообще все пропорции определяются эмпирически исходя из количества и типа клеток.
  • Клетки плохо пролизировались недостаточно или, напротив, чрезмерно. Чрезмерный лизис клеток может привести к их слипанию и выпадению в осадок.
    • Необходимо правильно подбирать концентрацию лизирующего агента. Различные клеточные линии обладают разной чувствительностью к таким агентам. Следует протестировать разные концентрации на небольшом числе клеток (5 млн.).
  • ДНК не полностью или избыточно разрезалась ДНКазой.
    • Как и в случае лизиса, решающую роль играет концентрация. Если разрезание происходит недостаточно эффективно, следует увеличить концентрацию фермента или время обработки или взять меньшее число клеток. При избыточной обработке следует сократить воздействие ДНКазы и взять её в меньшей концентрации.

Сопоставление с другими методами

Данные DNase-seq коррелируют с данными DNase-ChIP. Результаты, полученные обоими методами, коррелируют с результатами количественной ПЦР . Однако между этими методами много различий. DNase-seq, в отличие от DNase-ChIP, используется только для экспериментов со всем геномом. DNase-ChIP обладает меньшей точностью, но большей гибкостью и может быть использован и для исследования отдельных участков генома.

DNase-seq — прямой метод, применимый к клеткам любого типа любого вида, чей геном секвенирован . DNase-seq очень удобен для идентификации регуляторных элементов генома в первом приближении. Однако биологические функции этих элементов этот метод напрямую не объясняет. Для определения функций регуляторных элементов необходимо использовать другие методы, такие как хроматиновая иммунопреципитация .

Существуют бионинформатические алгоритмы, позволяющие обработать сырые экспериментальные данные и провести более тщательный анализ генома. Например, с точностью до нуклеотида можно определить участки, где ДНК связывалась с белками, т. наз. белковые следы . Если сгруппировать белковые следы и гиперчувствительные сайты в кластеры с более ясными биологическими функциями и соотнести с данными о регуляторных последовательностях генома, можно сделать вывод о том, как доступность хроматина влияет на взаимодействие ДНК с транскрипционными факторами.

В открытом доступе существует сервер, содержащий данные DNase- и ChIP-seq человека и мыши.

Проект ENCODE

Одной из целей проекта ENCODE является картирование всех гиперчувствительных сайтов в геноме человека с целью систематизации регуляторной ДНК . С помощью высокопроизводительного секвенирования был получен профиль гиперчувствительных сайтов для 125 типов клеток человека. В результате было идентифицировано 2,9 млн гиперчувствительных сайтов. 34 % были специфичны для каждого типа клеток и только небольшое количество было обнаружено во всех типах клеток. Эти данные дают представление о большой сложности регулирования экспрессии в человеческом геноме и о количестве элементов контролирующих эту регуляцию .

Вопрос о том, сможет ли DNase-seq заменить ChIP-seq и до какой степени, остаётся предметом будущих исследований.

Примечания

  1. Cockerille PN. Structure and function of active chromatin and DNase I hypersensitive sites (англ.) // FEBSJ. — 2011. — Iss. 277 . — P. 2182–2210 .
  2. Wu C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I (англ.) // Nature. — 1980. — Iss. 286 . — P. 854-860 .
  3. Wu C, Wong YC, Elgin SC. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity (англ.) // Cell. — 1979. — Iss. 16 . — P. 807-814 .
  4. Levy A, Noll M. Chromatin fine structure of active and repressed genes (англ.) // Nature. — 1981. — Iss. 289 . — P. 198-203 .
  5. Gross DS, Garrard WT. (англ.) // Annu Rev Biochem. — 1988. — Iss. 57 . — P. 159-197 .
  6. Keene MA, Corces V, Lowenhaupt K, Elgin SC. DNase I hypersensitive sites in Drosophila chromatin occur at the 5′ ends of regions of transcription (англ.) // Proc Natl Acad Sci. — 1981. — Iss. 78 . — P. 143-146 .
  7. Song L. and Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells (англ.) // ColdSpringHarb.Protoc.. — 2010. — P. 1-11 .
  8. Boyle, A.P., Guinney, J., Crawford, GE, Furey, TS. F-Seq: a feature density estimator for high-throughput sequence tags (англ.) // Bioinformatics. — 2008. — Iss. 24 . — P. 2537–2538 .
  9. Sabo, P.J. et al. Discovery of functional noncoding elements by digital analysis of chromatin structure (англ.) // Proc. Natl. Acad. Sci. USA. — 2004. — Iss. 101 . — P. 16837–16842 .
  10. Hardison, RC, Taylor, J. Genomic approaches to finding cis-regulatory modules in animals (англ.) // Nat. Rev. Genet. — 2013. — Iss. 13 . — P. 469-483 .
  11. Zeng, W, Mortazavi, A. Technical considerations for functional sequencing assays (англ.) // Nature Immunology. — 2012. — Iss. 13 . — P. 802-803 .
  12. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE. High-resolution mapping and characterization of open chromatin across the genome (англ.) // Cell. — 2008. — Iss. 132 . — P. 311-322 .
  13. Madrigal P, Krajewski P. Current bioinformatic approaches to identify DNase I hypersensitive sites and genomic footprints from DNase-seq data (англ.) // Frontiers in genetics. — 2012. — Iss. 3 . — P. 1-3 .
  14. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting (англ.) // Nat Methods. — 2009. — Iss. 6 . — P. 283-289 .
  15. Thurman RE et al. The accessible chromatin landscape of the human genome (англ.) // Nature. — 2012. — Iss. 489 . — P. 75-82 .
  16. Zhang, W et al. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis (англ.) // The Plant cell. — 2012. — Iss. 24 . — P. 2719-2731 .
Источник —

Same as DNase-seq