АЭС Бюже
- 1 year ago
- 0
- 0
Нововоро́нежская АЭС — одна из первых промышленных атомных электростанций СССР. Расположена в Воронежской области на расстоянии 3,5 км от города Нововоронеж . До областного центра (г. Воронеж ) — 45 км . Является филиалом АО «Концерн Росэнергоатом» .
Нововоронежская АЭС — первая в России станция с реакторами типа ВВЭР (водо-водяные энергетические реакторы корпусного типа с обычной водой под давлением). Пять из семи реакторов, построенных на станции, являлись головными прототипами серийных энергетических реакторов .
Нововоронежская АЭС является главным источником электрической энергии Воронежской области , обеспечивая её потребности на 85%. Кроме того, с 1986 года она на 50 % обеспечивает город Нововоронеж теплом.
Электроэнергия АЭС выдаётся потребителям по линиям напряжением 110, 220 и 500 кВ.
В 1972 году станции было присвоено имя 50-летия СССР, а в 1976 году за успехи в освоении энергоблоков атомной станции награждена орденом Трудового Красного Знамени.
До 18 сентября 2008 года станция входила во ФГУП «Росэнергоатом», после его реорганизации входит в концерн Росэнергоатом .
Нововоронежская АЭС расположена в лесостепной местности на левом берегу реки Дон в 45 км к югу от города Воронежа и на расстоянии 50 км к северо-западу от города Лиски . В административном отношении площадка НВАЭС расположена в Каширском районе Воронежской области. К северу от промплощадки на расстоянии 5 километров расположен благоустроенный город российских энергетиков Нововоронеж, градообразующим предприятием которого является Нововоронежская АЭС. НВ АЭС расположена на берегу реки Дон — крупного водоёма государственного значения 1 категории водопользования. Район Нововоронежской АЭС является зоной интенсивного земледелия , мясо-молочного животноводства и птицеводства .
Рельеф района расположения площадки НВ АЭС соответствует участку рельефа среднего Дона в пределах Тамбовской равнины и представляет собой полого-волнистую равнину , местами пересечённую оврагами . В геоморфологическом отношении район площадки расположен на стыке двух морфологических областей: Средне-Русской возвышенности и Тамбовской низменности в среднем течении реки Дон.
Левобережная часть реки Дон, на которой расположена площадка АЭС — низменная. Правобережная же часть представлена глубокими извилистыми балками и многочисленными ложбинами, которые придают местности «волнистый» вид.
В процессе строительства объектов НВ АЭС русло реки Дон было спрямлено Духовским прораном . За счёт перераспределения водного потока происходит размыв правого берега реки Дон, интенсивность размыва составляет 3-5 м/год. Левобережный склон в районе НВ АЭС залесён, что препятствует его размыву в периоды снеготаяния и интенсивного выпадения осадков. На самой промплощадке поверхность спланирована и оборудована ливневой канализацией, на поверхности следов размыва не отмечается.
В районе НВ АЭС климат умеренно континентальный с хорошо выраженными сезонами года. Здесь почти равновероятно присутствие различных по происхождению воздушных масс — холодных из Арктики, влажных из Атлантики и сухих из Казахстана. В течение всего года АЭС находится вблизи климатического гребня высокого давления, ось которого проходит примерно по линии Кишинёв-Саратов.
Основными источниками водопользования в районе станции являются:
По содержанию главных ионов вода в поверхностных водоёмах классифицируется как карбонато-кальциевая 2-го типа (НСО 3 − <Са 2+ + Mg 2+ <НСО 3 − + SO 4 2− ) со средним уровнем минерализации менее 500 мг/л. Подпитка подземных вод происходит за счёт инфильтрации атмосферных осадков. Воды пресные гидрокарбонатно-кальциевые. Коэффициент фильтрации водовмещающих пород — 1—18 м/сут.
На энергоблоках № 3 и 4 используются реакторы типа ВВЭР-440 , турбоустановки , в количестве 4 штуки (по две на каждый энергоблок) и генераторы типа , в количестве 4-х штук (то есть по два на энергоблок). Центральный зал реакторного отделения и машинный зал на этих двух энергоблоках общие. На энергоблоке 5 используется реактор ВВЭР-1000 , две турбоустановки и два генератора . Реакторное оборудование энергоблока № 5 размещено внутри защитной оболочки ( контайнмента ).
АЭС развивалась на базе несерийных водо-водяных энергетических реакторов корпусного типа с обычной водой под давлением. В настоящее время в работе находятся энергоблоки № 4, 5, 6, 7 общей электрической мощностью 3778 МВт. Энергоблоки № 1, 2 и 3 уже выведены из эксплуатации. Каждый из шести реакторов станции является головным, то есть прототипом серийных энергетических реакторов. Корпуса всех реакторов Нововоронежской АЭС изготовлены ПО « Ижорский завод » г. Колпино г. Санкт-Петербург .
Энергоблок № 1 начал строиться в 1958 году, № 2 в 1964 году. На энергоблоках эксплуатировались реакторы ВВЭР-210 (1 энергоблок) и ВВЭР-365 (2 энергоблок). В сентябре 1964 года начал свою работу первый блок НВ АЭС , в декабре 1969 года второй. На полную мощность энергоблоки были выведены в декабре 1964 (первый) и в апреле 1970 года (второй). Первый блок остановлен в 1984 году, второй в 1990. В настоящее время ведутся работы по подготовке к выводу данных реакторов из эксплуатации. Также на 1-м, 2-м блоках НВАЭС проходят испытания новейшие системы дезактивации и переработки радиоактивных отходов.
Строительство энергоблоков началось в 1967 году. В декабре 1971 года был введён в эксплуатацию третий энергоблок, ровно через год четвёртый. В июне 1972 года 3 энергоблок был выведен на максимальную мощность, в мае 1973 года на полную мощность заработал четвёртый энергоблок. На энергоблоках используют реакторы типа ВВЭР-440 . Оборудование реакторных установок размещено в герметичных боксах, которые обеспечивают удержание в этих помещениях радиоактивных веществ при разуплотнении первого контура. По проектным срокам 3 энергоблок должен был быть выведен из эксплуатации в 2001 году, четвёртый — в 2002 году, но в связи с недостатком электроэнергии срок их эксплуатации был продлён на 15 лет. С 2015 года проводилась модернизация 4-го блока, которая позволила увеличить срок его эксплуатации ещё на 15 лет. 3-й блок был остановлен для вывода из эксплуатации 25 декабря 2016 года . 4-й энергоблок был остановлен 11 декабря 2017 года для продления его ресурса ещё на 15 лет, пуск после модернизации был осуществлен 28 декабря 2018 г. В ходе работ установлена новейшая система аварийного охлаждения зоны реактора , за время существования данной серии энергоблоков с реакторами ВВЭР-440 такая система установлена впервые. Её отличие состоит в том, что при наличии активной системы охлаждения будет ещё и пассивная (без участия человека), для этого в специально построенном здании установлены четыре гидроёмкости, в которых находится запас борного раствора, с помощью которого в случае нештатной ситуации будет охлаждаться активная зона реакторной установки . Также был произведен обжиг корпуса реактора, заменены системы контроля и автоматики, произведен ремонт оборудования реакторного и турбинного отделения.
В 1972 году началось строительство 5-го энергоблока Нововоронежской АЭС . Введён в эксплуатацию он был в мае 1980 года, на 100 % мощности выведен в феврале 1981 года. На этом энергоблоке используется реактор ВВЭР-1000 (Модификация В-187). Реакторная установка 5-го энергоблока является головной. Технико-экономические показатели энергоблока № 5 по сравнению с другими энергоблоками Нововоронежской АЭС были улучшены за счёт увеличения мощности, укрупнения и усовершенствования оборудования, снижения капитальных затрат.
На энергоблоке № 5 были реализованы принципиально новые для того времени решения:
В целом реакторная установка энергоблока № 5 выполнена в полном соответствии с действующими в России нормативными документами обеспечения безопасности атомных станций . Пятый энергоблок должен был быть выведен из эксплуатации в 2010 году, но срок его эксплуатации продлён в связи с недостатком электроэнергии.
3 июня 2010 года в 15 часов 58 минут сработала автоматическая защита по факту отключения трёх из четырёх главных циркуляционных насосов. Отключение произошло по сигналу снижения уровня питательной воды в трёх парогенераторах в связи с отключением одного турбопитательного насоса. Энергоблок № 5 был отключён от сети.
Данное событие классифицируется уровнем «ноль» по Международной шкале оценки ядерных событий INES , то есть является несущественным для безопасности станции и персонала. Радиационных последствий нет. Радиационный фон на станции и прилегающей территории не изменялся, находится на уровне, соответствующем нормальной эксплуатации энергоблоков, и не превышает естественных фоновых значений. 18 сентября 2011 года турбоустановка № 14 энергоблока № 5 Нововоронежской АЭС включена в сеть после проведения мероприятий по продлению срока эксплуатации на 25 лет, испытания вновь смонтированных систем и оборудования .
Шестой и седьмой энергоблоки на этапе строительства носили наименование Нововоронежской АЭС-2. Шестой энергоблок — самый мощный блок в атомной энергетике РФ, и первый в мире блок АЭС, построенный по « постфукусимским » технологиям безопасности, соответствующим самым современным требованиям надёжности и безопасности (например, функции безопасности системы управления реакторной установкой дублируются дополнительной диверсной системой защиты с использованием непрограммируемых компонентов , которые обеспечивают одновременное аппаратное, программное и алгоритмическое разнообразие, что, в частности, исключает отказы, связанные с ненадёжностью программного обеспечения ).
Этот энергоблок, физический пуск которого состоялся в мае 2016 года, построен по российскому проекту «АЭС-2006» с реакторной установкой ВВЭР-1200 установленной электрической мощностью 1200 мегаватт. Он относится к атомным блокам поколения «3+» с улучшенными технико-экономическими показателями, соответствующим самым современным требованиям надёжности и безопасности. Блок обеспечен дополнительными системами пассивной безопасности, не требующими вмешательства персонала станции в случае возникновения аварийной ситуации, и не допускающими её развития.
5 августа 2016 года инновационный энергоблок поколения «3+» Нововоронежской АЭС был включён в сеть и выдал первые 240 МВт в энергосистему страны. В 03 часов 35 минут по московскому времени на блоке № 6 с реактором ВВЭР-1200 НВ АЭС успешно осуществлено первое пробное включение генератора в сеть.
26 октября 2016 года в 06:30 энергоблок впервые был выведен на 100%-ый уровень мощности (1160 МВт).
10 ноября 2016 года на 15-й день работы на 100 % мощности энергоблок № 6 Нововоронежской АЭС отключён от сети защитой из-за отказа электрического генератора. В процессе разгрузки энергоблока произошёл выброс пара парогенератора с открытием быстродействующих редуцирующих устройств с выбросом в атмосферу (БРУ-А). Блочный трансформатор и трансформаторы собственных нужд не пострадали, и после отключения были поставлены под напряжение . Причиной отключения ТГ явилось короткое замыкание в обмотке статора турбогенератора. Предварительная оценка по Международной шкале ядерных событий (INES) — «0». Для скорейшего включения энергоблока № 6 в сеть было принято решение о замене статора генератора на новый, ранее поставленный для энергоблока № 7 Нововоронежской АЭС .
23 февраля 2017 года успешно завершились испытания 15-суточным комплексным опробованием на 100%-ом уровне мощности, в ходе которого энергоблок подтвердил способность стабильно нести нагрузку в соответствии с проектными параметрами .
27 февраля Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) выдала заключение о соответствии вводимого объекта проектной документации, техническим регламентам, и нормативно-правовым актам, в том числе требованиям энергетической эффективности. Энергоблок сдан в промышленную эксплуатацию .
28 февраля 2017 года энергоблок успешно прошёл аттестацию генерирующего оборудования и с 1 марта начал поставку мощности на оптовый рынок электроэнергии .
Строительство энергоблока № 7 по проекту «АЭС-2006» и ввод его в эксплуатацию завершены в 2019 году.
Характеристика | Энергоблок, № | ||
---|---|---|---|
Энергоблок 3 | Энергоблок 4 | Энергоблок 5 | |
Электрическая мощность энергоблока (брутто), МВт | 417 | 417 | 1000 |
Тепловая мощность, МВт | 1375 | 1375 | 3000 |
К. п. д., (нетто) % | 29,7 | 29,7 | 33,0 |
Количество циркуляционных петель (насосов, парогенераторов), шт | 6 | 6 | 4 |
Расход теплоносителя через реактор, м³/ч | 44050 | 42110 | 88900 |
Рабочее давление теплоносителя, кГс/см² | 125 | 125 | 160 |
Максимальная температура теплоносителя на входе в реактор, °C | 269 | 269 | 289 |
Средний подогрев теплоносителя, °C | 27,7 | 28,9 | 29,5 |
Поверхность теплоотдачи от ТВЭЛов, м² | 3150 | 3150 | 4850 |
Масса диоксида урана в активной зоне, т | 47,2 | 47,5 | 70 |
Количество топливных сборок, шт | 349 | 349 | 151 |
Количество органов механической системы регулирования реактивности реактора, шт | 73 | 73 | 109 |
Высота корпуса реактора (без верхнего блока), м | 11,80 | 11,80 | 10,88 |
Максимальный диаметр корпуса, м | 4,27 | 4,27 | 4,57 |
Внутренний диаметр главных циркуляционных трубопроводов, мм | 500 | 500 | 850 |
Среднее линейное энерговыделение ТВЭЛа, Вт/см | 125 | 125 | 176,4 |
Энергонапряжённость активной зоны, кВт/л | 84,0 | 84,0 | 111,1 |
Обогащение топлива (макс.), % | 3.6 | 3.82 | 4.4 |
Производительность парогенератора, т/ч | 455 | 455 | 1470 |
Поверхность теплопередачи парогенератора (расчётная), м² | 2500 | 2500 | 5040 |
Количество турбогенераторов, шт | 2 | 2 | 2 |
Давление насыщенного пара перед турбиной, кГс/см² | 44 | 44 | 60 |
Давление в конденсаторе турбины, кГс/см² | 0,035 | 0,035 | 0,06 |
Мощность турбогенератора, МВт | 220 | 220 | 500 |
Основную долю общего объёма твёрдых радиоактивных отходов (ТРО) — около 98 %, образующихся в процессе эксплуатации Нововоронежской АЭС , составляют низко- и среднеактивные отходы . Хранение твёрдых радиоактивных отходов производится в хранилищах, которые представляют собой железобетонные сооружения, имеющие внутреннюю гидроизоляцию. На Нововоронежской АЭС разработана и действует технологическая схема обращения с твёрдыми радиоактивными отходами, предусматривающая их сбор, сортировку, переработку (прессование), транспортировку и безопасное хранение.
В марте 2015 года на базе энергоблока № 2 (ныне бездействующего) запущен комплекс плазменной переработки радиоактивных отходов по технологии, разработанной в НПО «Радон» .
Все жидкие радиоактивные отходы (ЖРО), образующиеся на энергоблоках, хранятся в ёмкостях из нержавеющей стали. С помощью установок глубокого упаривания УГУ-500 производится переработка кубового остатка до солевого концентрата, который в горячем расплавленном состоянии заливается в металлические бочки, превращаясь после охлаждения в монолит. Бочки содержатся в хранилище твёрдых отходов. Это позволяет сокращать объёмы жидких радиоактивных отходов и хранить их в более безопасном твёрдом виде.
Отработавшее ядерное топливо в виде тепловыделяющих сборок (ТВС) на каждом энергоблоке хранится в бассейне выдержки не менее трёх лет. Для хранения отработанных ТВС реактора ВВЭР-1000 энергоблока № 5 сооружено дополнительное отдельно стоящее хранилище на 922 ТВС.
Основные направления работы Нововоронежской АЭС в области охраны окружающей среды:
Проектные решения энергоблоков Нововоронежской АЭС, организация технологических процессов обеспечивают приемлемую радиационную безопасность персонала при производстве работ, что подтверждено более чем тридцатилетним опытом эксплуатации Нововоронежской АЭС.
Река Дон является приёмником:
Рыбхоз является приёмником:
Открытый подводящий канал 3 и 4 блоков является приёмником:
Пруд-охладитель 5 блока является приёмником:
Хозфекальная канализация промплощадки НВ АЭС является приёмником:
Поля фильтрации НВ АЭС являются приёмником:
Сбросов жидких радиоактивных отходов в водоёмы-охладители и на поля фильтрации НВ АЭС не производит.
Нововоронежская АЭС производит радиоактивные вентиляционные выбросы в атмосферу. Сильных изменений фона они не создают, так как вентиляционные трубы имеют большую высоту, и радиоактивные газы и аэрозоли рассеиваются в атмосфере постоянными ветрами.
На НВ АЭС используются три основных метода обезвреживания радиоактивных газоаэрозольных выбросов:
После очистки газоаэрозольные выбросы удаляются через вентиляционные трубы, высота которых обеспечивает оптимальное рассеивание в атмосфере.
Для целей контроля вокруг Нововоронежской АЭС в радиусе до 50 км организовано 33 стационарных дозиметрических поста, на которых контролируются радиоактивность осадков, почвы и растительности, а также наиболее значимой в рационе жителей сельскохозяйственной продукции: мяса, пшеницы, картофеля, сахарной свёклы. Окружающая среда на Нововоронежской АЭС и вокруг неё контролируется также независимыми органами санитарно-эпидемиологического надзора и охраны окружающей среды России .
Отделом информации Нововоронежской АЭС предусмотрены многочисленные программы по работе с населением, целью которых является
В 2011 году проводятся общественные слушания по вопросам строительства и эксплуатации ХТРО -10000 [ уточнить ] .
Коллектив отдела информации проводит различные акции, такие как: тематические уроки в школах, спортивные и интеллектуальные соревнования, связи с общественностью и разъяснительная работа с населением. Станция имеет свой сайт, где можно прочитать краткую информацию о АЭС и последние новости станции. Также НВ АЭС выпускает брошюры и книги о работе предприятия.
Энергоблок | Тип реакторов | Мощность |
Начало
строительства |
Подключение к сети | Ввод в эксплуатацию | Закрытие | |
---|---|---|---|---|---|---|---|
Чистая | Брутто | ||||||
Нововоронеж-1 | ВВЭР-210 | 197 МВт | 210 МВт | 01.07.1957 | 30.09.1964 | 31.12.1964 | 16.02.1984 |
Нововоронеж-2 | ВВЭР-365 | 336 МВт | 365 МВт | 01.06.1964 | 27.12.1969 | 14.04.1970 | 29.08.1990 |
Нововоронеж-3 | ВВЭР-440/179 | 385 МВт | 417 МВт | 01.07.1967 | 27.12.1971 | 29.06.1972 | 25.12.2016 |
Нововоронеж-4 | ВВЭР-440/179 | 385 МВт | 417 МВт | 01.07.1967 | 28.12.1972 | 24.03.1973 | 2032 (план) |
Нововоронеж-5 | ВВЭР-1000/187 | 950 МВт | 1000 МВт | 01.03.1974 | 31.05.1980 | 20.02.1981 | 2036 (план) |
Нововоронеж-6 | ВВЭР-1200/392М | 1114 МВт | 1180,3 МВт | 24.06.2008 | 05.08.2016 | 27.02.2017 | 2077 (план) |
Нововоронеж-7 | ВВЭР-1200/392М | 1114 МВт | 1180,983 МВт | 12.07.2009 | 01.05.2019 | 31.10.2019 | 2079 (план) |