Диагональ
- 1 year ago
- 0
- 0
Диагона́ль ( греч. διαγώνιος ; от δια- «через» + γώνια «угол») — в элементарной геометрии отрезок, соединяющий несмежные вершины многоугольника или многогранника . По аналогии используется также при наглядном описании квадратных матриц , в теории множеств и теории графов .
Для многоугольников диагональ — это отрезок , соединяющий две несмежные вершины. Так, четырёхугольник имеет две диагонали, соединяющие противолежащие вершины. У выпуклого многоугольника диагонали проходят внутри него. Многоугольник выпуклый тогда и только тогда, когда его диагонали лежат внутри.
Пусть — число вершин многоугольника, вычислим — число возможных разных диагоналей. Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой. Таким образом, из одной вершины можно провести диагонали; перемножим это на число вершин
однако, мы посчитали каждую диагональ дважды (по разу для каждого конца) — отсюда,
Диагональю многогранника называется отрезок, соединяющий две его вершины, не принадлежащие одной грани. Так, на изображении куба отмечена диагональ . Отрезок же диагональю куба не является (но является диагональю одной из его граней).
Аналогично можно определить диагональ и для многогранников в пространствах бо́льших размерностей.
В случае с квадратными матрицами , главная диагональ является диагональной линией элементов, которая проходит с северо-запада на юго-восток. Например, единичная матрица может быть описана, как матрица, имеющая единицы на главной диагонали и нули вне её.
Наддиагональными элементами называются такие, что лежат выше и правее главной диагонали. Поддиагональными — те, что ниже и левее. Диагональная матрица — такая матрица, у которой все элементы вне главной диагонали (т.е. наддиагональные и поддиагональные) равны нулю.
Диагональ с юго-запада на северо-восток часто называется .
По аналогии, подмножество декартового произведения X × X произвольного множества X на само себя, состоящее из пар элементов (x, x), называется диагональю множества . Это — , оно играет важную роль в геометрии: например, F с X в X могут быть получены сечением F с диагональю множества X .
|
В статье
не хватает
ссылок на источники
(см.
рекомендации по поиску
).
|