HUGO Gene Nomenclature Committee
- 1 year ago
- 0
- 0
Blue Gene — проект массово-параллельной архитектуры , разработанный для создания нескольких суперкомпьютеров и направленный на достижение скорости обработки данных, превышающей 1 петафлопс . На данный момент успешно освоена скорость почти в 20 петафлопс . Является совместным проектом фирмы IBM (подразделение Rochester MN и ), Ливерморской национальной лаборатории , Министерства энергетики США (которое частично финансирует проект) и академических кругов. Предусмотрено три этапа проекта: Blue Gene/L, Blue Gene/P и Blue Gene/Q.
Проект был награждён Национальной Медалью США в области технологий и инноваций 18 сентября 2009 года. Президент Барак Обама вручил награду 7 октября 2009 .
В декабре 1999 года IBM объявила о инициативе исследования длительностью пять лет и бюджетом в 100 млн. долл. США по созданию массово параллельных компьютеров, которые должны применяться для изучения таких биомолекулярных явлений, как сворачивание белка. Проект преследовал две основные цели: улучшить наше понимание механизмов, лежащих в основе сворачивания белка с помощью крупномасштабного моделирования, а также изучить новые идеи в массивно-параллельной архитектуре машин и программного обеспечения.
Основными областями исследования являются:
Первоначальный проект для Blue Gene был основан на ранней версии Cyclops64 архитектуры, разработанной Деннеем Монти . На начальном этапе работы по исследованию и разработке выполнялись в IBM TJ Watson Research Center.
В IBM, Алан Гар начал работать над расширением QCDOC архитектуры в суперкомпьютер более общего назначения: четыре близких друг к другу сетей с внутрисистемной коммутацией были заменены на сеть с поддержкой маршрутизации сообщений с любого узла в любой другой, а так же была добавлена подсистема параллельного ввода/вывода. Министерство энергетики начало финансировать развитие этой системы, и она стала известна как Blue Gene/L (L как Light). Разработка оригинальной Blue Gene системы продолжилась под названием Blue Gene/С (С как Циклоп), а позднее была переименована в Cyclops64.
Каждое следующее поколение системы Blue Gene получала своё название. Так, второе поколение суперкомпьютеров (представлено в 2007 году) получило название Blue Gene/P, третье (представлено в 2011 году) — Blue Gene/Q.
Blue Gene/L — это первый компьютер серии IBM Blue Gene, разработанный совместно с Ливерморской национальной лабораторией . Его теоретическая пиковая производительность составляет 360 терафлопс , а реальная производительность, полученная на тесте Linpack , около 280 терафлопс. После апгрейда в 2007 году реальная производительность увеличилась до 478 терафлопс при пиковой производительности в 596 терафлопс. Blue Gene/C подмножество для архитектуры Cyclops64.
В ноябре 2006 года 27 компьютеров из списка TOP500 имели архитектуру Blue Gene/L.
Blue Gene/ L суперкомпьютер был уникальным в следующих аспектах:
Blue Gene/L архитектура — это эволюция QCDSP- и QCDOC-архитектур. Каждый Blue Gene/L узел вычисления или ввода/вывода — это одиночная ASIC (интегральная схема специального назначения), объединенная с DRAM чипом памяти. ASIC оснащена двумя встроенными 700 МГц-процессорами PowerPC 440 (каждый с двухканальным математическим сопроцессором (FPU) двойной точности), кэшем подсистемы со встроенным контроллером DRAM и логикой для поддержки нескольких коммуникационных подсистем. Двойной FPU дал каждому Blue Gene/L узлу теоретическую пиковую производительность в 5,6 Гфлопс. Процессоры не объединены когерентным кэшем.
На одну вычислительную карту помещаются по два вычислительных узла, на одну плату помещается по 16 вычислительных карт плюс не более 2 узлов ввода/вывода. В одну стойку помещается до 32 плат. При интеграции всех необходимых систем на один чип и использовании логических элементов малой мощности каждый узел вычисления или ввода/вывода тратит малую мощность (около 17 ватт , включая расходы DRAM). Это позволяет очень плотно упаковывать до 1024 вычислительных узлов (плюс дополнительные узлы ввода/ вывода) в стандартную 19-дюймовую стойку, обеспечивая её источниками электропитания и воздушного охлаждения в разумных пределах. Показатели эффективности с точки зрения флопс на ватт, флопс на квадратный метр площади и флопс на единицу стоимости позволяет масштабировать систему до очень высокой производительности. С таким большим количеством узлов сбои в работе компонентов неизбежны. Поэтому система может электрически изолировать ряд неисправных компонентов, чтобы продолжать нормально функционировать.
Каждый Blue Gene/L узел подключается к трем параллельным сетям связи:
Узлы ввода/вывода, на которых работает ОС Linux, обеспечивают связь с хранилищем и внешними узлами через Ethernet сети. Узлы ввода/вывода обрабатывают операции с файловой системой вычислительных узлов. Наконец, отдельные и частные сети Ethernet сеть обеспечивает доступ к любому узлу для конфигурации, загрузки и диагностики.
Чтобы разрешить запуск нескольких программ одновременно, Blue Gene/L система должна быть разделена на электронно-изолированые разделы узлов. Число узлов в разделе должно быть кратным степени 2, по крайней мере, 25 = 32 узлов. Для запуска программы на Blue Gene/L, раздел сначала резервируется. Затем программа загружается и запускается на всех узлах в пределах раздела, и никакая другая программа не может получить доступ к узлам в пределах раздела, пока раздел используется. После завершения раздела узлы освобождаются для запуска следующих программ.
Вычислительные узлы Blue Gene/L используют максимально облегченную ОС, поддерживающую одну программу пользователя. Поддерживается только часть POSIX процедур, и одновременно только один процесс может работать на узле в режиме сопроцессора или один процесс на процессоре в виртуальном режиме. Программистам необходимо использовать Green threads для имитации локального параллелизма. Разработка приложений, как правило, выполняется в C, C++ или Fortran с использованием MPI для связи. Так же возможна разработка на некоторых скриптовых языках, таких как Ruby и Python, так как они интегрированы в ОС вычислительных узлов.
Проект Cyclops64 был начат в ответ на разработку Earth Simulator — (система разработана Японским агентством аэрокосмических исследований и Японским институтом ядерных исследований в 1997 для исследования эффекта глобального потепления и решения проблем геофизики).
Cyclops64 является совместным проектом Департамента энергетики США (который частично финансирует проект), Министерства обороны США, промышленных корпораций (в частности, IBM) и академий.
Архитектура была придумана победителем Seymour Cray Award Деннеем Монти, который и в настоящее время руководит проектом.
Каждый 64-разрядный чип Cyclops64 работает на 500 МГц и содержит 80 процессоров. Каждый процессор имеет две нити потоков и математический сопроцессор (FPU). Каждая нить - это упорядоченное 64-разрядное RISC-ядро с 32 КБ дополнительной памяти, использующее 60-командное подмножество набора инструкций Power Architecture. Пять процессоров разделяют 32 Кб кэш инструкций.
Процессоры связаны через 96-й порт [ уточнить ] с матричным коммутатором. Они общаются друг с другом через глобальную разделяемую память (память, которую можно записывать и считывать всеми потоками) в SRAM.
Теоретическая пиковая производительность чипа Cyclops64 составляет 80 ГФлопс.
На одном процессоре работает две нити (два потока), на один чип помещается до 80 процессоров. На плату помещают 1 чип, далее на промежуточную плату устанавливают до 48 плат. В одну стойку влезает по 3 промежуточных платы. Система может включать до 96 (12х8) стоек.
То есть полная система содержит 13 824 Cyclops64 чипов, состоящих из 1105920 процессоров, на которых способны работать 2211840 параллельных потоков.
Cyclops64 предоставляет большую часть своих аппаратных возможностей для программирования, позволяя программисту писать очень высоко производительное и тонко настроенное программное обеспечение. Негативным моментом является трудность программирования под Cyclops64
В данный момент ведутся исследования и разработки, что система могла поддерживать TiNy-Threads (библиотека потоков, разработанная в Университете штата Делавэр ) и POSIX Threads.
26 июня 2007 года IBM представила Blue Gene/P, второе поколение суперкомпьютеров Blue Gene. Разработан для работы с пиковой производительностью в 1 петафлопс . Blue Gene/P может быть сконфигурирован для достижения пиковой производительности более, чем 3 петафлопса. Кроме того, он в семь раз более энергетически эффективен чем любые другие суперкомпьютеры . Blue Gene/P выполнен с использованием большого числа небольших, маломощных чипов, связывающихся через пять специализированных сетей.
Каждый чип Blue Gene/P состоит из четырёх процессорных ядер с тактовой частотой 850 МГц. Чип оперативной памяти 2 или 4 ГБ и сетевые интерфейсы образуют вычислительный узел суперкомпьютера. 32 вычислительных узла объединяются в карту (Compute Node card), к которой можно подсоединить от 0 до 2 узлов ввода-вывода. Системная стойка вмещает в себя 32 таких карты.
Конфигурация Blue Gene/P с пиковой производительностью 1 петафлопс представляет собой 72 системные стойки, содержащие 294 912 процессорных ядер, объединённых в высокоскоростную оптическую сеть. Конфигурация Blue Gene/P может быть расширена до 216 стоек с общим числом процессорных ядер 884 736, чтобы достигнуть пиковую производительность в 3 петафлопса. В стандартной конфигурации системная стойка Blue Gene/P содержит 4 096 процессорных ядер .
Blue Gene/Q — третье поколение архитектуры. Целью разработчиков стало достижение 20-петафлопсного рубежа в 2011 году. Blue Gene/Q является эволюционным продолжением архитектур Blue Gene/L и /P, работающим на более высокой частоте и потребляющей меньше энергии на один флопс производительности.
BlueGene/Q — это мультиядерная, 64-битная система на чипе, построенная по технологии PowerPC (если быть абсолютно конкретным, то это четырёхтактная архитектура ). Каждый из чипов содержит 18 ядер, вместе набирающих вес в почти полтора миллиарда (1,47) транзисторов. 16 ядер используются для, собственно, вычислений, на одном работает операционная система, и, наконец последнее ядро отвечает за надежность вычислений всей системы. На частоте в 1,6 Ггц, каждый чип способен выдать 204,8 Гфлопс, потребляя мощность в 55 Ватт. Естественно, частью чипа являются и контроллеры памяти и операций ввода-вывода. Blue Gene/Q содержит 4 устройства вычислений над числами с плавающей запятой, что даёт нам 4 выполненных операции за один такт на каждом ядре.
18 ядер, по утверждению сотрудников IBM, нужны для надёжности. Если на одном из ядер процессора был зафиксирован сбой, оно может быть отключено и переведено на «скамейку запасных». Собственно, обнаружение и изменение конфигурации «ошибочного» ядра может быть проведено на любом этапе производства или сборки системы — не только когда чип уже тестируется, но и на ранних этапах, например, инсталляции чипа в вычислительный кластер. В случае с IBM Sequoia будет использоваться около 100 000 чипов, для того чтобы достичь заветных 20 петафлопс. Огромное количество процессоров делает задачу переназначения ядер очень важной: в компании IBM подсчитали, что при данном (100 тысяч) количестве чипов в суперкомпьютере каждые 3 недели в среднем будет выходить из строя 1 процессорный блок.
Также известно, что в Blue Gene/Q реализована поддержка транзакционной памяти не на программном, а аппаратном уровне .
Стоимость Blue Gene/Q (при использовании коммерческих цен) оценивается The Register приблизительно в 150 млн долларов США за каждый петафлопс .
Всего из десяти самых мощных суперкомпьютеров в списке Top500 на 4 построены на платформе Blue Gene/Q.
Согласно последнему списку TOP500 (от ноября 2013 года) суперкомпьютеры, построенные по архитектуре Blue Gene, всё ещё не теряют своих позиций.
Рейтинг | Место нахождение | Система | Кол-во ядер | Максимальная скорость (ТФлопс/с) | Пиковая скорость (ТФлопс/с) | Энергопотребление (кВт) |
---|---|---|---|---|---|---|
3 | Ливерморский ИЦ (США) | Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 1572864 | 17173,2 | 20132,7 | 7890 |
5 | Аргонская НЛ (США) | Mira - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 786432 | 8586,6 | 10066,3 | 3945 |
8 | Юлихский ИЦ (Германия) | JUQUEEN - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 458752 | 5008,9 | 5872,0 | 2301 |
9 | Ливерморский ИЦ (США) | Vulcan - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 393216 | 4293.3 | 5033.2 | 1972 |
15 | СКЦ Сиена, г. Болонья (Италия) | Fermi - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 163840 | 1788.9 | 2097.2 | 822 |
23 | Лаборатория Дарсбери, г. Варрингтон (Великобритания) | Blue Joule - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 114688 | 1252.2 | 1468.0 | 575 |
27 | Университет Единбурга (Великобритания) | DiRAC - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 98304 | 1073.3 | 1258.3 | 493 |
38 | Политехнический институт Ренсселера (США) | BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 81920 | 894.4 | 1048.6 | 411 |
45 | Академия наук (Франция) | BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 65536 | 715.6 | 838.9 | 329 |
46 | Компания EDF R&D, г. Париж (Франция) | Zumbrota - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 65536 | 715.6 | 838.9 | 329 |
47 | Швейцарский национальный СКЦ (Швейцария) | EPFL Blue Brain IV - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 65536 | 715.6 | 838.9 | 329 |
48 | Victorian Life Sciences Computation Initiative (Австралия) | Avoca - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 65536 | 715.6 | 838.9 | 329 |
57 | Организация по изучению высокоэнергетических ускорителей (Япония) | SAKURA - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 49152 | 536.7 | 629.1 | 247 |
58 | Организация по изучению высокоэнергетических ускорителей (Япония) | HIMAWARI - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 49152 | 536.7 | 629.1 | 247 |
67 | Аргонская НЛ (США | Intrepid - Blue Gene/P Solution IBM | 163840 | 458.6 | 557.1 | 1260 |
77 | Ливерморский ИЦ (США) | Dawn - Blue Gene/P Solution IBM | 147456 | 415.7 | 501.4 | 1134 |
87 | Рочестер IBM (США) | BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 32768 | 357.8 | 419.4 | 164 |
88 | Рочестер IBM (США) | BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 32768 | 357.8 | 419.4 | 164 |
89 | Университет Торонто (Канада) | BGQ - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 32768 | 357.8 | 419.4 | 164 |
216 | Аргонская НЛ (США) | Vesta - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 16384 | 189.0 | 209.7 | 82 |
217 | Аргонская НЛ (США) | Cetus - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 16384 | 189.0 | 209.7 | 82 |
218 | Федеральная политехническая школа Лозанны (Швейцария) | CADMOS BG/Q - BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 16384 | 189.0 | 209.7 | 82 |
219 | Рочестер IBM (США) | BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 16384 | 189.0 | 209.7 | 82 |
220 | IBM ИЦ им. Томаса Ватсона (США) | BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 16384 | 189.0 | 209.7 | 82 |
221 | Междисциплинарный центр математического и компьютерного моделирования, Варшавский университет (Польша) | BlueGene/Q, Power BQC 16C 1.600 GHz, Custom Interconnect IBM | 16384 | 189.0 | 209.7 | 82 |
222 | Рочестер IBM (США) | BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM | 16384 | 189.0 | 209.7 | 82 |
Самым быстродействующим компьютером из построенных на Blue Gene архитектуре является Sequoia. Сейчас он находится на третьем месте, но в июне 2012 года занимал первую строчку рейтинга TOP500. По энергоэффективности он всё же обходит лидера (17808 кВт) и серебряного призера (8209).