Interested Article - Теорема Кэли (теория групп)

Теорема Кэли теоретико-групповое утверждение об изоморфности всякой конечной группы порядка некоторой подгруппе группы перестановок . При таком соответствии каждый элемент сопоставляется с перестановкой , задаваемой тождеством , где — произвольный элемент группы .

Например, для группы с заданной операцией можно определить отображение :

В данном построении перестановка для каждого задаёт «таблицу сложения» с числом , например, число 2 в переходит на сумму (операцию группы ) 2 (самого этого числа) и 1 (элемента группы, для которого определяется перестановка). Таким образом, задаёт тождественное отображение , и отображение является гомоморфизмом .

Теоретико-категорное обобщение — лемма Йонеды (в её рамках группа может быть рассмотрена как категория из одного объекта).

Литература

  • Александров П. С. . Введение в теорию групп. — М. : Наука, 1980. — (Библиотечка «Квант», вып. 7).
  • , Ремесленников В. Н. , . Глава II. Группы // Общая алгебра / Под общ. ред. . — М. : Наука , 1990. — Т. 1. — С. 66—290. — 592 с. — (Справочная математическая библиотека). — 30 000 экз. ISBN 5-02-014426-6 .
Источник —

Same as Теорема Кэли (теория групп)