Interested Article - Измеримая функция

Измери́мые функции представляют естественный класс функций , связывающих пространства с выделенными алгебрами множеств , в частности измеримыми пространствами .

Определение

Пусть и — два множества с выделенными алгебрами подмножеств . Тогда функция называется - измеримой , или просто измеримой , если прообраз любого множества из принадлежит , то есть

Замечания

  • Если и топологические пространства , и алгебры и явно не указаны, то предполагается, что это борелевские σ-алгебры соответствующих пространств.
  • Смысл данного определения в том, что если на множестве задана мера, то данная функция индуцирует (передаёт) эту меру и на множество .

Вещественнозначные измеримые функции

Пусть дана функция . Тогда данное выше определение измеримости эквивалентно любому из нижеследующих:

  • Функция измерима, если
    .
  • Функция измерима, если
    , таких что , имеем ,
где обозначает любой интервал, открытый, полуоткрытый или замкнутый.

Связанные определения

  • Пусть и — две копии вещественной прямой вместе с её борелевской σ-алгеброй . Тогда измеримая функция называется борелевской .
  • Измеримая функция , где множество элементарных исходов , а — σ-алгебра случайных событий , называется случайным элементом . Частным случаем случайного элемента является случайная величина , для которой .

Примеры

  • Пусть непрерывная функция . Тогда она измерима относительно борелевской σ-алгебры на числовой прямой.
  • Пусть и индикатор множества Тогда функция не является измеримой.

Свойства

  • Теорема Лузина . Функция измерима тогда и только тогда, когда для любого существует непрерывная функция отличающаяся от на множестве меры не больше .

История

В 1901 году французский математик А. Лебег , на основе построенной им теории интеграла Лебега , поставил задачу: найти класс функций, более широкий, чем аналитические, однако при этом допускающий применение к нему многих аналитических методов. К этому времени уже существовала общая теория меры , разработанная Э. Борелем (1898), и первые работы Лебега опирались на борелевскую теорию. В диссертации Лебега (1902) теория меры была обобщена до так называемой меры Лебега . Лебег определил понятия измеримых множеств, ограниченных измеримых функций и интегралов для них, доказал, что все «обычные» ограниченные функции, исследуемые в анализе, измеримы, и что класс измеримых функций замкнут относительно основных аналитических операций, включая операцию предельного перехода . В 1904 году Лебег обобщил свою теорию, сняв условие ограниченности функции.

Исследования Лебега нашли широкий научный отклик, их продолжили и развили многие математики: Э Борель, М. Рис , Дж. Витали , М. Р. Фреше , Н. Н. Лузин , Д. Ф. Егоров и др. Было введено понятие сходимости по мере (1909), глубоко исследованы топологические свойства класса измеримых функций.

Труды Лебега имели ещё одно важное концептуальное значение: они были полностью основаны на спорной в те годы канторовской теории множеств , и плодотворность лебеговской теории послужила веским аргументом для принятия теории множеств как фундамента математики.

Литература

Источник —

Same as Измеримая функция