Interested Article - Гомологическая алгебра

Гомологическая алгебра — ветвь алгебры , изучающая алгебраические объекты, заимствованные из алгебраической топологии .

Гомологическая алгебра играет важную роль в алгебраической топологии, применяется во многих разделах алгебры, таких, как теория групп, теория алгебр, алгебраическая геометрия, теория Галуа.

История

Первыми гомологические методы в алгебре применили в 40-х годах XX века Дмитрий Константинович Фаддеев , Самуэль Эйленберг и Саундерс Маклейн при изучении расширений групп.

Цепной комплекс

Цепной комплекс — это градуированный модуль с дифференциалом , , понижающим градуировку для цепного комплекса, , или повышающим градуировку для коцепного комплекса , .

Одним из основных понятий гомологической алгебры является цепной комплекс. Цепные комплексы возникают в различных разделах математики: в алгебраической топологии, коммутативной алгебре, алгебраической геометрии. Изучение общих свойств комплексов — одна из основных задач гомологической алгебры.

Резольвента

Проективной резольвентой модуля , называется левый комплекс , в котором все проективны и гомологии которого равны нулю, кроме нулевых.

Проективные резольвенты используются для вычисления функторов n ( A , C ) и Ext n ( A , C ). Резольвенты возникли в алгебраической топологии для вычисления гомологий топологического произведения по гомологиям сомножителей по формуле Кюннета.

Производные функторы

Литература

  • А. Картан, С. Эйленберг , «Гомологическая алгебра», 1960 год.
  • С. Маклейн , «Гомология», 1966 год.
  • Р. Годеман «Алгебраическая топология и теория пучков», 1961 год.
  • Бурбаки , «Гомологическая алгебра», 1987 год.
Источник —

Same as Гомологическая алгебра