Interested Article - Тривиальный узел

Тривиальный узел (или незаузлённый узел , англ. unknot ) — геометрический узел , объемлюще-изотопный стандартному вложению окружности в трёхмерную сферу , а также объемлюще-изотопический класс такого геометрического узла.

Под окружностью здесь подразумевается подмножество евклидовой плоскости , а под стандартным вложением окружности в трёхмерную сферу – вложение , где или любое аналогичное отображение, отправляющее плоскость в одну из координатных плоскостей трёхмерного пространства.

Эквивалентно можно определить тривиальный узел как геометрический узел, который продолжается до гладкого вложения двумерного диска в трёхмерную сферу, а также объемлюще-изотопический класс такого геометрического узла. Иными словами, любой геометрический узел, для которого существует гладко вложенный в трёхмерную сферу двумерный диск, которого является этот геометрический узел, называется тривиальным узлом и все тривиальные узлы являются объемлюще-изотопными.

Узел, не являющийся тривиальным, принято называть нетривиальным узлом .

Тривиальный узел играет существенную роль в различных задачах теории узлов и обладает рядом уникальных свойств.

Свойства

Комбинаторные свойства

  • Тривиальный узел – единственный узел, который допускает диаграмму без перекрёстков, иными словами число перекрёстков тривиального узла равняется нулю. Стоит отметить, что иногда наличие диаграммы без перекрёстков принимается за определение тривиального узла.

Алгебраические свойства

  • Ориентированный тривиальный узел является единичным элементом в .
  • Большинство численных мер сложности принимают (иногда по соглашению, как в случае с числом мостов ) минимальные значения на тривиальном узле, иными словами, тривиальный узел оказывается «самым простым» во многих разумных смыслах. Так, например,
и это единственный для каждого перечисленного выше инварианта узел, на котором достигается соответствующее значение.
  • Все классические полиномиальные инварианты узлов, такие как многочлен Александера , многочлен Джонса , многочлен Кауффмана и многочлен HOMFLY-PT , принимают на тривиальном узле значение . Но в отличие от мер сложности вопрос о единственности тривиального узла как принимающего единичное значение не так однозначен. Так, существует бесконечное количество нетривиальных узлов, значение многочлена Александера на которых равно (например, любое удовлетворяет этому условию), а существование нетривиального узла с равным единице многочленом Джонса или многочленом HOMFLY-PT до сих пор является открытым вопросом.

Простота тривиального узла

  • Теорема: Тривиальный узел является простым узлом , то есть не допускает представления в виде двух нетривиальных узлов.

Эквивалентная переформулировка теоремы о простоте тривиального узла вносит ясность в устройство , а именно, утверждает, что ни один нетривиальный элемент этого моноида не имеет обратного. Этот элементарный, но нетривиальный результат имеет несколько независимых доказательств.

Топологические свойства

Геометрические свойства

Алгоритмическое распознавание тривиального узла

Более сложная для визуального распознавания диаграмма тривиального узла, известная как диаграмма Тистлетвэйта
Две диаграммы тривиального узла, тривиальность которых легко распознать визуально

Классический вопрос алгоритмической теории узлов — задача распознавания тривиального узла . Задача состоит в том, чтобы создать алгоритм, который по поданной на вход диаграмме узла выводил бы ответ, является ли данный узел тривиальным. Существует ряд алгоритмов, решающих эту задачу, однако основной вопрос на данный момент остаётся открытым, а именно, существует ли полиномиальный алгоритм распознавания тривиального узла. Стоит отметить, что диаграммы тривиального узла могут быть очень сложными как к визуальному, так и к машинному распознаванию. Классическим примером «трудной» диаграммы тривиального узла является так называемый « ».

Числа развязывания

С тривиальным узлом связан ряд инвариантов, обобщённо называемых числа развязывания. Исторически первым подобным инвариантом было классическое число развязывания узла, то есть минимальное количество применений преобразования переключения перекрёстков, необходимое для превращения данного узла в тривиальный. Несколько позже, с развитием узлов, появились соответствующие инварианты и для других преобразований, например, или .

Примечания

  1. .
  2. .
  3. .
  4. , p. 5.
  5. , p. 11.
  6. .
  7. .
  8. .

Литература

  • Мантуров В. О. Теория узлов . — Москва-Ижевск: Институт компьютерных исследований, 2005. — 512 с. — ISBN 5-93972-404-3 .
  • Kanenobu T., Miyazawa Y. (англ.) // Communications in Mathematical Research. — 2009. — Vol. 25 . — P. 433-460 .
  • Okada M. (англ.) // Journal of the Mathematical Society of Japan. — 1990. — Vol. 42 , no. 4 . — P. 713-717 . — doi : .
  • Scharlemann M. G. (англ.) // Inventiones mathematicae. — 1985. — Vol. 82 , no. 1 . — P. 37-55 . — doi : .
Источник —

Same as Тривиальный узел