Сетевая система обнаружения вторжений
- 1 year ago
- 0
- 0
Система обнаружения вторжений ( СОВ ) — программное или аппаратное средство, предназначенное для выявления фактов неавторизованного доступа в компьютерную систему или сеть либо несанкционированного управления ими в основном через Интернет . Соответствующий английский термин — (IDS) . Системы обнаружения вторжений обеспечивают дополнительный уровень защиты компьютерных систем.
Системы обнаружения вторжений используются для обнаружения некоторых типов вредоносной активности, которая может нарушить безопасность компьютерной системы. К такой активности относятся сетевые атаки против уязвимых сервисов, атаки, направленные на повышение привилегий , неавторизованный доступ к важным файлам, а также действия вредоносного программного обеспечения ( компьютерных вирусов , троянов и червей )
Обычно архитектура СОВ включает:
Существует несколько способов классификации СОВ в зависимости от типа и расположения сенсоров, а также методов, используемых подсистемой анализа для выявления подозрительной активности. Во многих простых СОВ все компоненты реализованы в виде одного модуля или устройства.
В сетевой СОВ , сенсоры расположены на важных для наблюдения точках сети, часто в демилитаризованной зоне , или на границе сети. Сенсор перехватывает весь сетевой трафик и анализирует содержимое каждого пакета на наличие вредоносных компонентов. используются для отслеживания трафика, нарушающего правила определённых протоколов либо синтаксис языка (например, SQL ). В хостовых СОВ сенсор обычно является программным агентом , который ведет наблюдение за активностью хоста, на который установлен. Также существуют гибридные версии перечисленных видов СОВ.
В пассивной СОВ при обнаружении нарушения безопасности информация о нарушении записывается в лог приложения, а также сигналы опасности отправляются на консоль и/или администратору системы по определённому каналу связи. В активной системе , также известной как Система Предотвращения Вторжений ( (англ.) ), СОВ ведет ответные действия на нарушение, сбрасывая соединение или перенастраивая межсетевой экран для блокирования трафика от злоумышленника. Ответные действия могут проводиться автоматически либо по команде оператора.
Хотя и СОВ, и межсетевой экран относятся к средствам обеспечения информационной безопасности, межсетевой экран отличается тем, что ограничивает поступление на хост или подсеть определённых видов трафика для предотвращения вторжений и не отслеживает вторжения, происходящие внутри сети. СОВ, напротив, пропускает трафик, анализируя его и сигнализируя при обнаружении подозрительной активности. Обнаружение нарушения безопасности проводится обычно с использованием эвристических правил и анализа сигнатур известных компьютерных атак.
Первая концепция СОВ появилась благодаря Джеймсу Андерсону и статье . В 1984 Фред Коэн (см. ) сделал заявление о том, что каждое вторжение обнаружить невозможно и ресурсы, необходимые для обнаружения вторжений, будут расти вместе с степенью использования компьютерных технологий.
Дороти Деннинг, при содействии Питера Неймана, опубликовали модель СОВ в 1986, сформировавшую основу для большинства современных систем. Её модель использовала статистические методы для обнаружения вторжений и называлась IDES (Intrusion detection expert system — экспертная система обнаружения вторжений). Система работала на рабочих станциях Sun и проверяла как сетевой трафик, так и данные пользовательских приложений.
IDES использовала два подхода к обнаружению вторжений: в ней использовалась экспертная система для определения известных видов вторжений и компонент обнаружения, основанный на статистических методах и профилях пользователей и систем охраняемой сети. Тереза Лунт предложила использовать искусственную нейронную сеть как третий компонент для повышения эффективности обнаружения. Вслед за IDES в 1993 вышла NIDES (Next-generation Intrusion Detection Expert System — экспертная система обнаружения вторжений нового поколения).
MIDAS ( Multics intrusion detection and alerting system), экспертная система, использующая P-BEST и LISP , была разработана в 1988 году на основе работы Деннинга и Неймана. В этом же году была разработана система Haystack, основанная на статистических методах.
W&S (Wisdom & Sense — мудрость и чувство), основанный на статистических методах детектор аномалий, был разработан в 1989 году в . W&S создавал правила на основе статистического анализа и затем использовал эти правила для обнаружения аномалий.
В 1990, в TIM (Time-based inductive machine) было реализовано обнаружение аномалий с использованием индуктивного обучения на основе последовательных паттернов пользователя на языке Common LISP . Программа была разработана для VAX 3500. Примерно в то же время был разработан NSM (Network Security Monitor — монитор сетевой безопасности), сравнивающий матрицы доступа для обнаружения аномалий на рабочих станциях Sun-3/50. В том же 1990 году был разработан ISOA (Information Security Officer’s Assistant), содержащий в себе множество стратегий обнаружения, включая статистику, проверку профиля и экспертную систему. ComputerWatch, разработанный в AT&T Bell Labs, использовал статистические методы и правила для проверки данных и обнаружения вторжений.
Далее, в 1991, разработчики Университета Калифорнии разработали прототип распределенной системы DIDS (Distributed intrusion detection system), которая также являлась экспертной системой. Также в 1991 сотрудниками Национальной Лаборатории Встроенных Вычислительных Сетей (ICN) была разработана система NADIR (Network anomaly detection and intrusion reporter). На создание этой системы оказала большое влияние работа Деннинга и Люнт. NADIR использовала основанный на статистике детектор аномалий и экспертную систему.
В 1998 году Национальная лаборатория им. Лоуренса в Беркли представила Bro , использующий собственный язык правил для анализа данных libpcap . NFR (Network Flight Recorder), разработанный в 1999, также работал на основе libpcap. В ноябре 1998 был разработан APE, сниффер пакетов, тоже использующий libpcap. Спустя месяц APE был переименован в Snort .
В 2001 году была разработана система ADAM IDS (Audit data analysis and mining IDS). Система использовала данные tcpdump для создания правил.