Interested Article - Теория кристаллического поля

Теория кристаллического поля — квантовохимическая модель, в которой электронная конфигурация соединений переходных металлов описывается как состояние иона либо атома, находящегося в электростатическом поле , создаваемым окружающими его ионами, атомами или молекулами. Концепция кристаллического поля была предложена Беккерелем для описания состояния атомов в кристаллах и затем развита Хансом Бете и Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами — как анионами, так и нейтральными молекулами. Теория кристаллического поля была в дальнейшем объединена [и усовершенствована] с теорией (делокализованных) молекулярных орбиталей в более общую , учитывающую частичную ковалентность связи металл-лиганд в координационных соединениях .

Теория кристаллического поля позволяет предсказать или интерпретировать оптические спектры поглощения и спектры электронного парамагнитного резонанса кристаллов и комплексных соединений, а также энтальпий гидратации и устойчивости в растворах комплексов переходных металлов.

Обзор теории кристаллического поля

Согласно ТКП, взаимодействие между переходным металлом и лигандами возникает вследствие притяжения между положительно заряженным катионом металла и отрицательным зарядом электронов на несвязывающих орбиталях лиганда. Теория рассматривает изменение энергии пяти вырожденных d -орбиталей в окружении точечных зарядов лигандов. По мере приближения лиганда к иону металла, электроны лиганда становятся ближе к некоторым d -орбиталям, чем к другим, вызывая потерю вырожденности. Электроны d -орбиталей и лигандов отталкиваются друг от друга как заряды с одинаковым знаком. Таким образом, энергия тех d -электронов, которые ближе к лигандам, становится выше, чем тех, которые дальше, что приводит к расщеплению уровней энергии d -орбиталей.

На расщепление влияют следующие факторы:

  • Природа иона металла.
  • Степень окисления металла. Чем выше степень окисления, тем выше энергия расщепления.
  • Расположение лигандов вокруг иона металла.
  • Природа лигандов, окружающих ион металла. Чем сильнее эффект от лигандов, тем больше разность между высоким и низким уровнем энергии.

Самый распространённый вид координации лигандов — октаэдрическая , при которой шесть лигандов создают кристаллическое поле октаэдрической симметрии вокруг иона металла. При октаэдрическом окружении иона металла с одним электроном на внешней оболочке d-орбитали разделяются на две группы с разностью энергетических уровней Δ окт ( энергия расщепления ), при этом энергия у орбиталей d xy , d xz и d yz будет ниже, чем у d z 2 и d x 2 - y 2 , так как орбитали первой группы находятся дальше от лигандов и испытывают меньшее отталкивание. Три орбитали с низкой энергией обозначаются как t 2g , а две с высокой — как e g .

Следующими по распространённости являются тетраэдрические комплексы, в которых четыре лиганда образуют тетраэдр вокруг иона металла. В этом случае d -орбитали также разделяются на две группы с разностью энергетических уровней Δ тетр . В отличие от октаэдрической координации, низкой энергией будут обладать орбитали d z 2 и d x 2 - y 2 , а высокой — d xy , d xz и d yz . Кроме того, так как электроны лигандов не находятся непосредственно в направлении d -орбиталей, энергия расщепления будет ниже, чем при октаэдрической координации. С помощью ТКП также можно описать плоскоквадратную и другие геометрии комплексов.

Разность энергетических уровней Δ между двумя или более группами орбиталей зависит также от природы лигандов. Некоторые лиганды вызывают меньшее расщепление, чем другие, причины чего объясняет . Спектрохимический ряд — полученный опытным путём список лигандов, упорядоченных в порядке возрастания Δ:

I < Br < S 2− < SCN < Cl < NO 3 < N 3 < F < OH < C 2 O 4 2− < H 2 O < NCS < CH 3 CN < py < NH 3 < en < < phen < NO 2 < PPh 3 < CN < CO

Степень окисления металла также влияет на Δ. Металл с более высокой степенью окисления ближе притягивает лиганды за счёт большей разности зарядов. Лиганды, находящиеся ближе к иону металла, вызывают большее расщепление.

Низко- и высокоспиновые комплексы

Распределение d -электронов низкоспинового комплекса [Fe(NO 2 ) 6 ] 3−

Лиганды, вызывающие большое расщепление d -уровней, например CN и CO, называются лигандами сильного поля . В комплексах с такими лигандами электронам невыгодно занимать орбитали с высокой энергией. Следовательно, орбитали с низкой энергией полностью заполняются до того, как начинается заполнение орбиталей с высокой энергией. Такие комплексы называются низкоспиновыми . Например, NO 2 — лиганд сильного поля, создающий большое расщепление. Все 5 d -электронов октаэдрического иона [Fe(NO 2 ) 6 ] 3− будут располагаться на нижнем уровне t 2 g .

Распределение d -электронов высокоспинового комплекса [FeBr 6 ] 3−

Напротив, лиганды, вызывающие малое расщепление, например I и Br , называются лигандами слабого поля . В этом случае легче поместить электроны в орбитали с высокой энергией, чем расположить два электрона в одной орбитали с низкой энергией, потому что два электрона в одной орбитали отталкивают друг друга, и затраты энергии на размещение второго электрона в орбитали выше, чем Δ. Таким образом, прежде чем появятся парные электроны, в каждую из пяти d -орбиталей должно быть помещёно по одному электрону в соответствии с правилом Хунда . Такие комплексы называются высокоспиновыми . Например, Br — лиганд слабого поля, вызывающий малое расщепление. Все 5 d -орбиталей иона [FeBr 6 ] 3− , у которого тоже 5 d -электронов, будут заняты одним электроном.

Энергия расщепления для тетраэдрических комплексов Δ тетр примерно равна 4/9Δ окт (для одинаковых металла и лигандов). В результате этого разность энергетических уровней d -орбиталей обычно ниже энергии спаривания электронов, и тетраэдрические комплексы обычно высокоспиновые.

Диаграммы распределения d -электронов позволяют предсказать магнитные свойства координационных соединений. Комплексы с непарными электронами являются парамагнитными и притягиваются магнитным полем, а без — диамагнитными и слабо отталкиваются.

Энергия стабилизации кристаллическим полем

Энергия стабилизации кристаллическим полем (ЭСКП) — энергия электронной конфигурации иона переходного металла относительно средней энергии орбиталей. Стабилизация возникает вследствие того, что в поле лигандов энергетический уровень некоторых орбиталей ниже, чем в гипотетическом сферическом поле, в котором на все пять d -орбиталей действует одинаковая сила отталкивания, и все d -орбитали вырождены. Например, в октаэдрическом случае уровень t 2g ниже, чем средний уровень в сферическом поле. Следовательно, если в данных орбиталях находятся электроны, то ион металла более стабилен в поле лигандов относительно сферического поля. Наоборот, энергетический уровень орбиталей e g выше среднего, и электроны, находящиеся в них, уменьшают стабилизацию.

Энергия стабилизации октаэдрическим полем

В октаэдрическом поле три орбитали t 2g стабилизированы относительно среднего энергетического уровня на 2 / 5 Δ окт , а две орбитали e g дестабилизированы на 3 / 5 Δ окт . Выше были приведены примеры двух электронных конфигураций d 5 . В первом примере — низкоспиновый комплекс [Fe(NO 2 ) 6 ] 3− с пятью электронами в t 2g . Его ЭСКП составляет 5 × 2 / 5 Δ окт = 2Δ окт . Во втором примере — высокоспиновый комплекс [FeBr 6 ] 3− с ЭСКП (3 × 2 / 5 Δ окт ) − (2 × 3 / 5 Δ окт ) = 0. В этом случае стабилизирующий эффект электронов в низкоуровневых орбиталях нейтрализуется дестабилизирующим эффектом электронов в высокоуровневых орбиталях.

Диаграммы расщепления d-уровня кристаллическим полем

октаэдрическая пентагонально-бипирамидальная квадратно-антипризматическая
плоскоквадратная квадратно-пирамидальная тетраэдрическая
тригонально-бипирамидальная

Примечания

  1. . Дата обращения: 10 октября 2011. 12 сентября 2011 года.
  2. Д. Шрайвер, П. Эткинс. Теория кристаллического поля // Неорганическая химия = Inorganic Chemistry. — М. : Мир, 2004. — Т. 1. — С. 359. — 679 с. — ISBN 5-03-003628-8 .
Источник —

Same as Теория кристаллического поля