Interested Article - TF-IDF
- 2020-05-21
- 1
TF-IDF (от англ. TF — term frequency, IDF — inverse document frequency ) — статистическая мера, используемая для оценки важности слова в контексте документа , являющегося частью коллекции документов или корпуса . Вес некоторого слова пропорционален частоте употребления этого слова в документе и обратно пропорционален частоте употребления слова во всех документах коллекции.
Мера TF-IDF часто используется в задачах анализа текстов и информационного поиска , например, как один из критериев релевантности документа поисковому запросу, при расчёте меры близости документов при кластеризации .
Структура формулы
TF ( term frequency — частота слова) — отношение числа вхождений некоторого слова к общему числу слов документа. Таким образом, оценивается важность слова в пределах отдельного документа.
- ,
где есть число вхождений слова в документ, а в знаменателе — общее число слов в данном документе.
IDF ( inverse document frequency — обратная частота документа) — инверсия частоты, с которой некоторое слово встречается в документах коллекции. Основоположником данной концепции является Карен Спарк Джонс . Учёт IDF уменьшает вес широкоупотребительных слов. Для каждого уникального слова в пределах конкретной коллекции документов существует только одно значение IDF.
- ,
где
- |D| — число документов в коллекции;
- — число документов из коллекции , в которых встречается (когда ).
Выбор основания логарифма в формуле не имеет значения, поскольку изменение основания приводит к изменению веса каждого слова на постоянный множитель, что не влияет на соотношение весов.
Таким образом, мера TF-IDF является произведением двух сомножителей:
Большой вес в TF-IDF получат слова с высокой частотой в пределах конкретного документа и с низкой частотой употреблений в других документах.
Числовое применение
Существуют различные формулы , основанные на методе TF-IDF. Они отличаются коэффициентами, нормировками, использованием логарифмированных шкал.
Одной из наиболее популярных формул является формула BM25 .
Пример
Если документ содержит 100 слов, и слово «заяц» встречается в нём 3 раза, то частота слова (TF) для слова «заяц» в документе будет 0,03 (3/100). Вычислим IDF как десятичный логарифм отношения количества всех документов к количеству документов, содержащих слово «заяц». Таким образом, если «заяц» содержится в 1000 документах из 10 000 000 документов, то IDF будет равной: log(10 000 000/1000) = 4. Для расчета окончательного значения веса слова необходимо TF умножить на IDF. В данном примере, TF-IDF вес для слова «заяц» в выбранном документе будет равен: 0,03 × 4 = 0,12.
Применение в модели векторного пространства
Мера TF-IDF часто используется для представления документов коллекции в виде числовых векторов, отражающих важность использования каждого слова из некоторого набора слов (количество слов набора определяет размерность вектора) в каждом документе. Подобная модель называется векторной моделью и даёт возможность сравнивать тексты, сравнивая представляющие их векторы в какой-либо метрике ( евклидово расстояние , косинусная мера , манхэттенское расстояние , расстояние Чебышёва и др.), то есть производя кластерный анализ .
См. также
Примечания
- .
- В некоторых вариантах формулы не используется логарифмирование.
- Обычно перед анализом документа слова приводятся морфологическим анализатором к нормальной форме.
Литература
- Jones K. S. (англ.) // Journal of Documentation : журнал. — MCB University: MCB University Press, 2004. — Vol. 60 , no. 5 . — P. 493—502 . — ISSN .
- Динамические библиотечно-поисковые системы. М.: — Мир, 1979.
- Salton, G. and McGill, M. J. 1983 Introduction to modern information retrieval . McGraw-Hill, ISBN 0-07-054484-0 .
- Salton, G., Fox, E. A. and Wu, H. 1983 Extended Boolean information retrieval. Commun. ACM 26, 1022—1036.
- Salton, G. and Buckley, C. 1988 Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5): 513—523
- Федоровский А.Н, Костин М. Ю. Mail.ru на РОМИП -2005 // в сб. «Труды РОМИП’2005» Труды третьего российского семинара по оценке методов информационного поиска. Под ред. И. С. Некрестьянова, стр. 106—124, Санкт-Петербург: НИИ Химии СПбГУ, 2005.
- Алюнина Ю.М. Где живут чудовища? Корпусный метод обнаружения англицизмов и их производных в русскоязычном Интернете // Вестник Томского государственного университета. Филология. 2022. № 80. С. 5–29. doi:
Ссылки
- 2020-05-21
- 1