Interested Article - Взаимно простые числа
- 2020-06-28
- 2
Взаимно простые числа — целые числа , не имеющие никаких общих делителей , кроме . Равносильное определение : целые числа взаимно просты , если их наибольший общий делитель равен .
Например, взаимно просты числа и , так как у них нет общих делителей; но числа и не взаимно просты, так как у них имеется общий делитель .
Для указания взаимной простоты чисел и иногда используется обозначение (аналогия с перпендикулярными прямыми, не имеющими общих направлений — взаимно простые числа не имеют общих сомножителей ).
Это понятие было введено в книге VII «Начал» Евклида . Для определения того, являются ли два числа взаимно простыми, можно использовать алгоритм Евклида .
Понятие взаимной простоты естественным образом обобщается на любые евклидовы кольца .
Попарно взаимно простые числа
Если в наборе целых чисел любые два числа взаимно просты, то такие числа называются попарно взаимно простыми (или просто попарно простыми ). Для двух чисел понятия «взаимно простые» и «попарно простые» совпадают, для более чем двух чисел свойство попарной простоты более сильно, чем ранее определённое свойство взаимной простоты (в совокупности) — попарно простые числа будут и взаимно простыми, но обратное неверно . Примеры:
- — не простые, но взаимно простые.
- — взаимно простые (в совокупности) числа, но не попарно простые.
- — попарно простые и взаимно простые (в совокупности).
Если числа — попарно простые числа, то:
- их наименьшее общее кратное равно абсолютной величине их произведения: ;
- для любого целого имеет место формула :
- , где — наибольший общий делитель .
Свойства
Все упомянутые в этом разделе числа подразумеваются целыми, если не оговорено иное.
- Количество натуральных чисел, взаимно простых с натуральным числом , задаётся функцией Эйлера .
- Числа и взаимно просты тогда и только тогда , когда существуют целые и такие, что ( соотношение Безу ) . Если натуральные числа и взаимно просты, то числа и также взаимно просты, притом верно и обратное.
- ( Лемма Евклида ) Если — делитель произведения и взаимно просто с , то — делитель .
- Если , то числа и взаимно просты.
- Дробь является несократимой тогда и только тогда, когда её числитель и знаменатель взаимно просты.
- Если числа и взаимно просты, то сравнение для любого имеет единственное решение по модулю В частности, решение сравнения для даёт обратный элемент для в кольце вычетов по модулю m . (См. Соотношение Безу )
- Вероятность того, что случайным образом выбранных положительных целых числа будут взаимно просты, равна , в том смысле, что при вероятность того, что положительных целых чисел, меньших, чем (и выбранных случайным образом), будут взаимно простыми, стремится к . Здесь — это дзета-функция Римана .
Таблица взаимной простоты чисел до 30
В каждой клетке стоит наибольший общий делитель её координат, и соответствующие взаимно-простым парам координат единицы выделены тёмным. Из описанного выше свойства следует, что средняя плотность тёмных клеток при расширении таблицы до бесконечности станет равна .
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 |
4 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 4 | 1 | 2 |
5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 |
6 | 1 | 2 | 3 | 2 | 1 | 6 | 1 | 2 | 3 | 2 | 1 | 6 | 1 | 2 | 3 | 2 | 1 | 6 | 1 | 2 | 3 | 2 | 1 | 6 | 1 | 2 | 3 | 2 | 1 | 6 |
7 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 1 |
8 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 8 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 8 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 8 | 1 | 2 | 1 | 4 | 1 | 2 |
9 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 9 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 9 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 9 | 1 | 1 | 3 |
10 | 1 | 2 | 1 | 2 | 5 | 2 | 1 | 2 | 1 | 10 | 1 | 2 | 1 | 2 | 5 | 2 | 1 | 2 | 1 | 10 | 1 | 2 | 1 | 2 | 5 | 2 | 1 | 2 | 1 | 10 |
11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
12 | 1 | 2 | 3 | 4 | 1 | 6 | 1 | 4 | 3 | 2 | 1 | 12 | 1 | 2 | 3 | 4 | 1 | 6 | 1 | 4 | 3 | 2 | 1 | 12 | 1 | 2 | 3 | 4 | 1 | 6 |
13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 13 | 1 | 1 | 1 | 1 |
14 | 1 | 2 | 1 | 2 | 1 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 14 | 1 | 2 | 1 | 2 | 1 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 14 | 1 | 2 |
15 | 1 | 1 | 3 | 1 | 5 | 3 | 1 | 1 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 1 | 1 | 3 | 1 | 5 | 3 | 1 | 1 | 3 | 5 | 1 | 3 | 1 | 1 | 15 |
16 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 8 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 16 | 1 | 2 | 1 | 4 | 1 | 2 | 1 | 8 | 1 | 2 | 1 | 4 | 1 | 2 |
17 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 17 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
18 | 1 | 2 | 3 | 2 | 1 | 6 | 1 | 2 | 9 | 2 | 1 | 6 | 1 | 2 | 3 | 2 | 1 | 18 | 1 | 2 | 3 | 2 | 1 | 6 | 1 | 2 | 9 | 2 | 1 | 6 |
19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
20 | 1 | 2 | 1 | 4 | 5 | 2 | 1 | 4 | 1 | 10 | 1 | 4 | 1 | 2 | 5 | 4 | 1 | 2 | 1 | 20 | 1 | 2 | 1 | 4 | 5 | 2 | 1 | 4 | 1 | 10 |
21 | 1 | 1 | 3 | 1 | 1 | 3 | 7 | 1 | 3 | 1 | 1 | 3 | 1 | 7 | 3 | 1 | 1 | 3 | 1 | 1 | 21 | 1 | 1 | 3 | 1 | 1 | 3 | 7 | 1 | 3 |
22 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 11 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 22 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
23 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 23 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
24 | 1 | 2 | 3 | 4 | 1 | 6 | 1 | 8 | 3 | 2 | 1 | 12 | 1 | 2 | 3 | 8 | 1 | 6 | 1 | 4 | 3 | 2 | 1 | 24 | 1 | 2 | 3 | 4 | 1 | 6 |
25 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 25 | 1 | 1 | 1 | 1 | 5 |
26 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 13 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 26 | 1 | 2 | 1 | 2 |
27 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 9 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 9 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 27 | 1 | 1 | 3 |
28 | 1 | 2 | 1 | 4 | 1 | 2 | 7 | 4 | 1 | 2 | 1 | 4 | 1 | 14 | 1 | 4 | 1 | 2 | 1 | 4 | 7 | 2 | 1 | 4 | 1 | 2 | 1 | 28 | 1 | 2 |
29 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 29 | 1 |
30 | 1 | 2 | 3 | 2 | 5 | 6 | 1 | 2 | 3 | 10 | 1 | 6 | 1 | 2 | 15 | 2 | 1 | 6 | 1 | 10 | 3 | 2 | 1 | 6 | 5 | 2 | 3 | 2 | 1 | 30 |
Вариации и обобщения
Понятия простого числа , наибольшего общего делителя и взаимно простых чисел естественно обобщаются на произвольные евклидовы кольца , например, на кольцо многочленов или гауссовы целые числа . Обобщением понятия простого числа является « неприводимый элемент ». Данное выше определение взаимно простых чисел не годится для произвольного евклидова кольца, поскольку в кольце могут быть делители единицы ; в частности, определяется с точностью до умножения на делитель единицы. Поэтому определение взаимно простых чисел следует модифицировать .
Элементы евклидова кольца называются взаимно простыми, если множество их наибольших общих делителей содержит только делители единицы. |
Равносильные формулировки :
- Элементы евклидова кольца взаимно просты, если они не имеют никаких общих делителей, кроме делителей единицы.
- ( Соотношение Безу ) Элементы , евклидова кольца взаимно просты тогда и только тогда, когда существуют элементы такие, что .
Имеет также место лемма Евклида .
Практическое применение
Свойство взаимной простоты не только играет важную роль в теории чисел и коммутативной алгебре , но имеет ряд важных практических приложений, в частности, число зубьев на звёздочках и число звеньев цепи в цепной передаче стремятся делать взаимно простыми, что обеспечивает равномерность износа: каждый зуб звёздочки будет поочерёдно работать со всеми звеньями цепи.
Примечания
- ↑ Взаимно простые числа. // Математическая энциклопедия (в 5 томах). — М. : Советская Энциклопедия , 1977. — Т. 1. — С. 690.
- Р. Грэхем, Д. Кнут, О. Паташник. . — М. : «Мир», 1998. — С. . — 703 с. — ISBN 5-03-001793-3 .
- ↑ , с. 28.
- Нестеренко Ю. В. Теория чисел. — М. : Издательский центр «Академия», 2008. — С. 40. — 272 с. — ISBN 9785769546464 .
- , с. 64.
- ↑ Ларин С. В. Алгебра и теория чисел. Группы, кольца и поля: учеб. пособие для академического бакалавриата. — 2-е изд. — М. : Юрайт, 2018. — С. 92—93. — 160 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-05567-2 .
Литература
- // Большая советская энциклопедия : в 66 т. (65 т. и 1 доп.) / гл. ред. О. Ю. Шмидт . — М. : Советская энциклопедия , 1926—1947.
- Михелович Ш. Х. Теория чисел. — 2-е изд. — М. : Высшая школа, 1967. — 336 с.
- 2020-06-28
- 2