Interested Article - Алгоритм Дейкстры

Блок-схема алгоритма Дейкстры.

Алгори́тм Де́йкстры ( англ. Dijkstra’s algorithm ) — алгоритм на графах , изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году . Находит кратчайшие пути от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса . Алгоритм широко применяется в программировании, например, его используют протоколы маршрутизации OSPF и IS-IS .

Формулировка задачи

Примеры

Вариант 1. Дана сеть автомобильных дорог, соединяющих города Московской области. Некоторые дороги односторонние. Найти кратчайшие пути от города А до каждого города области (если двигаться можно только по дорогам).

Вариант 2. Имеется некоторое количество авиарейсов между городами мира, для каждого известна стоимость. Стоимость перелёта из A в B может быть не равна стоимости перелёта из B в A. Найти маршрут минимальной стоимости (возможно, с пересадками) от Копенгагена до Барнаула .

Формальное определение

Дан взвешенный ориентированный граф без дуг отрицательного веса . Найти кратчайшие пути от некоторой вершины графа до всех остальных вершин этого графа.

Неформальное объяснение

Каждой вершине из V сопоставим метку — минимальное известное расстояние от этой вершины до a .

Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки.

Работа алгоритма завершается, когда все вершины посещены.

Инициализация .

Метка самой вершины a полагается равной 0, метки остальных вершин — бесконечности.

Это отражает то, что расстояния от a до других вершин пока неизвестны.

Все вершины графа помечаются как непосещённые.

Шаг алгоритма .

Если все вершины посещены, алгоритм завершается.

В противном случае, из ещё не посещённых вершин выбирается вершина u , имеющая минимальную метку.

Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u , назовём соседями этой вершины. Для каждого соседа вершины u , кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом.

Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещённую и повторим .

Пример

Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке.

Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.

Кружками обозначены вершины, линиями — пути между ними (рёбра графа).

В кружках обозначены номера вершин, над рёбрами обозначен их вес — длина пути.

Рядом с каждой вершиной красным обозначена метка — длина кратчайшего пути в эту вершину из вершины 1.

Первый шаг .

Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.

Первый по очереди сосед вершины 1 — вершина 2, потому что длина пути до неё минимальна.

Длина пути в неё через вершину 1 равна сумме значения метки вершины 1 и длины ребра, идущего из 1-й в 2-ю, то есть 0 + 7 = 7.

Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.

Аналогичную операцию проделываем с двумя другими соседями 1-й вершины — 3-й и 6-й.

Все соседи вершины 1 проверены.

Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит.

Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.

Второй шаг .

Снова находим «ближайшую» из непосещённых вершин. Это вершина 2 с меткой 7.

Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.

Первый (по порядку) сосед вершины 2 — вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.

Следующий сосед — вершина 3, так как имеет минимальную метку.

Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9, а это меньше 17, поэтому метка не меняется.

Ещё один сосед вершины 2 — вершина 4.

Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояния до 2-й вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22).

Поскольку 22< , устанавливаем метку вершины 4 равной 22.

Все соседи вершины 2 просмотрены, замораживаем расстояние до неё и помечаем её как посещённую.

Третий шаг .

Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим такие результаты:

Дальнейшие шаги .

Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.

Завершение выполнения алгоритма .

Алгоритм заканчивает работу, когда все вершины посещены.

Результат работы алгоритма виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й — 9, до 4-й — 20, до 5-й — 20, до 6-й — 11.

Если в какой-то момент все непосещённые вершины помечены бесконечностью, то это значит, что до этих вершин нельзя добраться (то есть граф несвязный ). Тогда алгоритм может быть завершён досрочно.

Алгоритм

Обозначения

  • — множество вершин графа
  • — множество рёбер графа
  • — вес (длина) ребра
  • — вершина, расстояния от которой ищутся
  • — множество посещённых вершин
  • — по окончании работы алгоритма равно длине кратчайшего пути из до вершины
  • — по окончании работы алгоритма содержит кратчайший путь из в
  • — текущая вершина, рассматриваемая алгоритмом

Код реализации алгоритма

Ниже приведён код реализации алгоритма на языке программирования Java . Данный вариант реализации не является лучшим, но наглядно показывает возможную реализацию алгоритма:

class Dijkstra {
	double[] dist = new double[GV()];
	Edge[] pred = new Edge[GV()];
	public Dijkstra(WeightedDigraph G, int s) {
		boolean[] marked = new boolean[GV()];
		for (int v = 0; v <GV(); v++)
			dist[v] = Double.POSITIVE_INFINITY;
		MinPQplus<Double, Integer> pq;
		pq = new MinPQplus<Double, Integer>(); \\Priority Queue
		dist[s] = 0.0;
		pq.put(dist[s], s);
		while (!pq.isEmpty()) {
			int v = pq.delMin();
				if (marked[v]) continue;
			marked(v) = true;
			for (Edge e  (v)) {
				int w = e.to();
				if (dist[w]> dist[v] + e.weight()) {
					dist[w] = dist[v] + e.weight();
					pred[w] = e;
					pq.insert(dist[w], w);
				}
			}
		}
	}
}

Псевдокод

Присвоим

Для всех отличных от присвоим .

Пока . Пусть — вершина с минимальным занесём в

Для всех таких, что

Если то

Изменим

Изменим

Описание

В простейшей реализации для хранения чисел d [ i ] можно использовать массив чисел, а для хранения принадлежности элемента множеству U — массив булевых переменных.

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бо́льшим максимального возможного пути в графе ). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины . Если в них (в ) расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 . Последний случай возможен тогда и только тогда, когда граф G несвязный.

Доказательство корректности

Пусть — длина кратчайшего пути из вершины в вершину . Докажем по индукции, что в момент посещения любой вершины выполняется равенство .

База. Первой посещается вершина . В этот момент .

Шаг. Пусть мы выбрали для посещения вершину . Докажем, что в этот момент . Для начала отметим, что для любой вершины всегда выполняется (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть — кратчайший путь из в . Вершина находится на и не посещена. Поэтому множество непосещённых вершин на непусто. Пусть — первая непосещённая вершина на , — предшествующая ей (следовательно, посещённая). Поскольку путь кратчайший, его часть, ведущая из через в , тоже кратчайшая, следовательно .

По предположению индукции, в момент посещения вершины выполнялось , следовательно, вершина тогда получила метку не больше чем . Следовательно, . Если , то индукционный переход доказан. Иначе, поскольку сейчас выбрана вершина , а не , метка минимальна среди непосещённых, то есть . Комбинируя это с , имеем , что и требовалось доказать.

Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент для всех вершин.

Сложность алгоритма

Сложность алгоритма Дейкстры зависит от способа нахождения вершины v , а также способа хранения множества непосещённых вершин и способа обновления меток. Обозначим через n количество вершин, а через m — количество рёбер в графе G .

  • В простейшем случае, когда для поиска вершины с минимальным d [ v ] просматривается всё множество вершин, а для хранения величин d используется массив, время работы алгоритма есть . Основной цикл выполняется порядка n раз, в каждом из них на нахождение минимума тратится порядка n операций. На циклы по соседям каждой посещаемой вершины тратится количество операций, пропорциональное количеству рёбер m (поскольку каждое ребро встречается в этих циклах ровно дважды и требует константное число операций). Таким образом, общее время работы алгоритма , но, так как , оно составляет .
  • Для разреженных графов (то есть таких, для которых m много меньше n²) непосещённые вершины можно хранить в двоичной куче , а в качестве ключа использовать значения d [ i ], тогда время удаления вершины из станет при том, что время модификации возрастёт до . Так как цикл выполняется порядка n раз, а количество смен меток не больше m , время работы такой реализации — .
  • Если для хранения непосещённых вершин использовать фибоначчиеву кучу , для которой удаление происходит в среднем за , а уменьшение значения в среднем за , то время работы алгоритма составит . Однако согласно лекциям Алексеева и Таланова :

скрытые константы в асимптотических оценках трудоёмкости велики и использование фибоначчиевых куч редко оказывается целесообразным: обычные двоичные ( ) кучи на практике эффективнее.

Альтернативами им служат толстые кучи, тонкие кучи и , обладающие теми же асимптотическими оценками, но меньшими константами .

См. также

Примечания

  1. Частными случаями ориентированного графа являются неориентированный и смешанный («частично ориентированный») графы.
  2. Для графа с отрицательными весами применяется более общий алгоритм —
  3. Владимир Алексеев, Владимир Таланов, // 26.09.2006, Интуит.ру
  4. Владимир Алексеев, Владимир Таланов, // 26.09.2006, Интуит.ру

Литература

  • Dijkstra E. W. (англ.) // / — Springer Science+Business Media , 1959. — Vol. 1, Iss. 1. — P. 269—271. — ISSN ; —
  • Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн. Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-е изд. — М. : , 2006. — С. 1296. — ISBN 0-07-013151-1 .
  • Глава 9. Жадные методы: Алгоритм Дейкстры // М. : , 2006. — С. 189—195. — 576 с. — ISBN 978-5-8459-0987-9

Ссылки

  • C. Анисимов.
  • — реализация алгоритма на разных языках на .
Источник —

Same as Алгоритм Дейкстры