Гидроксид кальция
- 1 year ago
- 0
- 0
Гидрокси́д на́трия ( лат. Nátrii hydroxídum, Sodii hydroxídum , в Древнем Риме Lixīvĭum ; др. названия — каустическая со́да , е́дкий натр , гидроо́кись на́трия , хим. формула — NaOH ) — неорганическое химическое соединение , являющееся самой распространённой щёлочью . В год в мире производится и потребляется около 57 миллионов тонн едкого натра, имеет очень широкое применение в промышленности . Гигроскопичен , токсичен , вызывает химические ожоги , при попадании в глаза может вызвать слепоту , водный раствор разрушает алюминий . При работе с веществом в лаборатории требуется использование защитных перчаток и защитных очков .
История тривиальных названий как гидроксида натрия, так и других щелочей основывается на их свойствах. Название « едкая щёлочь » обусловлено свойством вещества разъедать кожу (вызывая сильные химические ожоги ), бумагу и другие органические вещества. До XVII века щёлочью ( фр. alkali ) называли также карбонаты натрия и калия. В 1736 году французский учёный Анри Дюамель дю Монсо впервые указал на различие этих веществ: гидроксид натрия получил название « каустическая сода », карбонат натрия — « кальцинированная сода », а карбонат калия — « поташ ».
В настоящее время содой принято называть натриевые соли угольной кислоты . В английском и французском языках лат. sodium означает «натрий», а potassium — «калий».
Гидроксид натрия — белое твёрдое вещество. Сильно гигроскопичен , на воздухе «расплывается», активно поглощая пары воды и углекислый газ из воздуха. Хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.
Термодинамика растворов
Δ H 0 растворения для бесконечно разбавленного водного раствора −44,45 кДж/моль.
Из водных растворов при +12,3…+61,8 °C кристаллизуется моногидрат (ромбическая сингония), температура плавления +65,1 °C; плотность 1,829 г/см 3 ; ΔH 0 обр −425,6 кДж/моль), в интервале от −28 до −24 °C — гептагидрат, от −24 до −17,7 °C — пентагидрат, от −17,7 до −5,4 °C — тетрагидрат (α-модификация). Растворимость в метаноле 23,6 г/л (t = +28 °C), в этаноле 14,7 г/л (t = +28 °C). NaOH·3,5Н 2 О (температура плавления +15,5 °C).
Гидроксид натрия (едкая щёлочь ) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к которым относят гидроксиды щелочных и щёлочноземельных металлов подгрупп IА и IIА периодической системы химических элементов Д. И. Менделеева , KOH (едкое кали), Ba(OH) 2 (едкий барит), LiOH , RbOH , CsOH , а также гидроксид одновалентного таллия TlOH . Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов , в котором за ноль принята активность водорода.
Водные растворы NaOH имеют сильную щелочную реакцию ( pH 1%-го раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH − ), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым ( метилоранжем ) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.
Гидроксид натрия вступает в следующие реакции:
Общая реакция в ионном виде:
Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия , действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.
например, с фосфором — с образованием гипофосфита натрия :
Гидроксид натрия вступает в реакцию с алюминием , цинком , титаном . Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал ). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:
Эта реакция использовалась в первой половине XX века в воздухоплавании : для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.
Гидроксид натрия используется в солях для перевода из одного кислотного остатка в другой:
с жирами ( омыление ) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин . Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.
В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.
Реагент | Фторид аммония | Нитрит цезия-калия-висмута | Ацетат магния | Ацетат цинка |
Пикро-
лоновая кислота |
Диокси-
винная кислота |
Бромбензол-
сульфокислота |
Ацетат уранила-цинка |
---|---|---|---|---|---|---|---|---|
Цвет осадка | белый | бледно-жёлтый | жёлто-зелёный | жёлто-зелёный | белый | белый | бледно-жёлтый | зеленовато-жёлтый |
Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.
К химическим методам получения гидроксида натрия относятся пиролитический, известковый и ферритный.
Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество энергоносителей, получаемый едкий натр сильно загрязнён примесями.
В настоящее время эти методы почти полностью вытеснены электрохимическими методами производства.
Пиролитический метод получения гидроксида натрия является наиболее древним и начинается с получения оксида натрия Na 2 О путём прокаливания карбоната натрия (например, в муфельной печи ). В качестве сырья может быть использован и гидрокарбонат натрия , разлагающийся при нагревании на карбонат натрия, углекислый газ и воду:
Полученный оксид натрия охлаждают и очень осторожно (реакция происходит с выделением большого количества тепла) добавляют в воду:
Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с гашеной известью при температуре около 80 °С. Этот процесс называется каустификацией и проходит по реакции:
В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция . Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. Затем NaOH плавят и разливают в железные барабаны, где он кристаллизуется.
Ферритный метод получения гидроксида натрия состоит из двух этапов:
Первая реакция представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 800—900 °С. При этом образуется спёк — феррит натрия и выделяется двуокись углерода. Далее спёк обрабатывают (выщелачивают) водой по второй реакции; получается раствор гидроксида натрия и осадок Fe 2 O 3 nH 2 О, который после отделения его от раствора возвращается в процесс. Получаемый раствор щёлочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а затем получают твёрдый продукт в виде гранул или хлопьев.
Способ основан на электролизе растворов галита (минерала, состоящего в основном из поваренной соли NaCl ) с одновременным получением водорода и хлора . Этот процесс можно представить суммарной формулой:
Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них — электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий — электролиз с жидким ртутным катодом (ртутный метод).
В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.
Показатель на 1 тонну NaOH | Ртутный метод | Диафрагменный метод | Мембранный метод |
---|---|---|---|
Выход хлора, % | 99 | 96 | 98,5 |
Электроэнергия, кВт·ч | 3150 | 3260 | 2520 |
Концентрация NaOH, % | 50 | 12 | 35 |
Чистота хлора, % | 99,2 | 98 | 99,3 |
Чистота водорода, % | 99,9 | 99,9 | 99,9 |
Массовая доля O 2 в хлоре, % | 0,1 | 1—2 | 0,3 |
Массовая доля Cl − в NaOH, % | 0,003 | 1—1,2 | 0,005 |
В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом.
Наиболее простым из электрохимических методов в плане организации процесса и конструкционных материалов для электролизера является диафрагменный метод получения гидроксида натрия.
Раствор соли в диафрагменном электролизере непрерывно подаётся в анодное пространство и протекает через, как правило, нанесённую на стальную катодную сетку асбестовую диафрагму, в которую иногда добавляют небольшое количество полимерных волокон.
Во многих конструкциях электролизеров катод полностью погружен под слой (электролита из анодного пространства), а выделяющийся на катодной сетке водород отводится из под катода при помощи газоотводных труб, не проникая через диафрагму в анодное пространство благодаря противотоку.
Противоток — очень важная особенность устройства диафрагменного электролизера. Именно благодаря противоточному потоку, направленному из анодного пространства в катодное через пористую диафрагму, становится возможным раздельное получение щёлоков и хлора. Противоточный поток рассчитывается так, чтобы противодействовать диффузии и миграции OH - ионов в анодное пространство. Если величина противотока недостаточна, тогда в анодном пространстве в больших количествах начинает образовываться гипохлорит-ион (ClO - ), который затем может окисляться на аноде до хлорат-иона ClO 3 - . Образование хлорат-иона серьёзно снижает выход по току хлора и является основным побочным процессом в этом методе получения гидроксида натрия. Также вредит и выделение кислорода, которое, к тому же, ведёт к разрушению анодов и, если они из углеродных материалов, попаданию в хлор примесей фосгена .
В качестве анода в диафрагменных электролизерах может использоваться графитовый или угольный электроды. На сегодня их, в основном, заменили титановые аноды с окисидно-рутениево-титановым покрытием (аноды ОРТА) или другие малорасходуемые аноды.
На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до товарной концентрации 42—50 % масс. в соответствии со стандартом.
Поваренная соль, сульфат натрия и другие примеси при повышении их концентрации в растворе выше их предела растворимости выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передаётся в качестве готового продукта на склад или продолжают стадию упаривания для получения твёрдого продукта, с последующим плавлением, превращением в чешуйки или гранулы.
Выпавшую в осадок в виде кристаллов поваренную соль возвращают назад в процесс, приготавливая из неё так называемый обратный рассол . От неё, во избежание накапливания примесей в растворах, перед приготовлением обратного рассола отделяют примеси.
Убыль анолита восполняют добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов, минеральных рассолов типа бишофита , предварительно очищенного от примесей или растворением галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и большей части ионов кальция и магния.
Полученный хлор отделяется от паров воды, сжимается компрессорами и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.
Благодаря относительной простоте и дешевизне диафрагменный метод получения гидроксида натрия до сих пор широко используется в промышленности.
Мембранный метод производства гидроксида натрия наиболее энергоэффективен, однако сложен в организации и эксплуатации.
С точки зрения электрохимических процессов мембранный метод подобен диафрагменному, но анодное и катодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Благодаря этому свойству становится возможным получение более чистых, чем в случае с диафрагменного метода, щелоков. Поэтому в мембранном электролизере, в отличие от диафрагменного, не один поток, а два.
В анодное пространство поступает, как и в диафрагменном методе, поток раствора соли. А в катодное — деионизированная вода. Из анодного пространства вытекает поток обеднённого анолита, содержащего также примеси гипохлорит- и хлорат-ионов и хлор, а из катодного — щёлока и водород, практически не содержащие примесей и близкие к товарной концентрации, что уменьшает затраты энергии на их упаривание и очистку.
Щёлочь, получаемая с помощью мембранного электролиза, практически не уступает по качеству получаемой при помощи метода с использованием ртутного катода и постепенно заменяет щёлочь, получаемую ртутным методом.
Однако питающий раствор соли (как свежий, так и оборотный) и вода предварительно максимально очищается от любых примесей. Такая тщательная очистка объясняется высокой стоимостью полимерных катионообменных мембран и их уязвимостью для примесей в питающем растворе.
Кроме того, ограниченная геометрическая форма, а также низкая механическая прочность и термическая стойкость ионообменных мембран во многом определяют сравнительно сложные конструкции установок мембранного электролиза. По той же причине мембранные установки требуют наиболее сложных систем автоматического контроля и управления.
В ряду электрохимических методов получения щёлоков самым эффективным способом является электролиз с ртутным катодом.
Щёлоки, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом (для некоторых производств это критично). Например, в производстве искусственных волокон можно применять только высокочистый каустик), а по сравнению с мембранным методом организация процесса при получении щёлочи ртутным методом гораздо проще.
Установка для ртутного электролиза состоит из электролизёра, разлагателя амальгамы и ртутного насоса, объединённых между собой ртутепроводами.
Катодом электролизёра служит поток ртути, прокачиваемой насосом. Аноды — графитовые , угольные или малоизнашивающиеся (ОРТА, ТДМА или другие). Вместе с ртутью через электролизёр непрерывно течёт поток питающего раствор поваренной соли.
На аноде происходит окисление ионов хлора из электролита , и выделяется хлор:
Хлор и анолит отводится из электролизёра. Анолит, выходящий из электролизёра, донасыщают свежим галитом, извлекают из него примеси, внесённые с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают растворённый в нём хлор.
На катоде восстанавливаются ионы натрия, которые образуют низкоконцентрированный раствор натрия в ртути ( амальгаму натрия):
Амальгама непрерывно перетекает из электролизёра в разлагатель амальгамы. В разлагатель также непрерывно подаётся высокоочищенная вода. В нём амальгама натрия в результате самопроизвольного химического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:
Полученный таким образом раствор каустика, являющийся товарным продуктом, практически не содержит примесей. Ртуть почти полностью освобождается от металлического натрия и возвращается в . Водород отводится на очистку.
Растущие требования к экологической безопасности производств и дороговизна металлической ртути ведут к постепенному вытеснению ртутного метода методами получения щёлочи с твёрдым катодом, в особенности мембранным методом.
В лаборатории гидроксид натрия иногда получают химическими способами, но чаще используется небольшой электролизёр диафрагменного или мембранного типа [ источник не указан 1293 дня ] .
В России и Беларуси , согласно ГОСТ 2263-79 (утратил силу), производятся следующие марки натра едкого:
Наименование показателя | ТР ОКП 21 3211 0400 | ТД ОКП 21 3212 0200 | РР ОКП 21 3211 0100 | РХ 1 сорт ОКП 21 3221 0530 | РХ 2 сорт ОКП 21 3221 0540 | РД Высший сорт ОКП 21 3212 0320 | РД Первый сорт ОКП 21 3212 0330 |
---|---|---|---|---|---|---|---|
Внешний вид | Чешуированная масса белого цвета. Допускается слабая окраска | Плавленая масса белого цвета. Допускается слабая окраска | Бесцветная прозрачная жидкость | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок |
Массовая доля гидроксида натрия, %, не менее | 98,5 | 94,0 | 42,0 | 45,5 | 43,0 | 46,0 | 44,0 |
Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:
Гидроксид натрия (едкий натр) — едкое и весьма , обладающее ярко выраженными щелочными свойствами . По ГОСТ 12.1.005-76 едкий натр относится к 2-го класса опасности . Поэтому при работе с ним нужно соблюдать . При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги . Попадание больших количеств едкого натра в глаза вызывает необратимые изменения зрительного нерва ( атрофию ) и, как следствие, потерю зрения .
При контакте слизистых поверхностей с едкой щёлочью необходимо промыть поражённый участок струёй воды, а при попадании на кожу — слабым раствором уксусной и борной кислоты. При попадании едкого натра в глаза следует немедленно промыть их сначала раствором борной кислоты, а затем водой .
Предельно допустимая концентрация аэрозоля гидроксида натрия NaOH в воздухе рабочей зоны составляет 0,5 мг/м³ в соответствии с ГОСТ 12.1.007-76 .
Гидроксид натрия негорюч; пожаро - и взрывобезопасен .
Едкий натр — опасное вещество для окружающей среды , подавляет биохимические процессы, оказывает .
Защита окружающей среды должна быть обеспечена соблюдением требований технологического регламента, правил перевозки и хранения.
Предельно допустимая концентрация ( ПДК ) едкого натра в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (по катионам натрия) составляет 200 мг/дм 3 , 2-й класс опасности в соответствии с гигиеническими нормативами . Необходим контроль водородного показателя (pH 6,5-8,5 и не более) .
(ОБУВ) едкого натра в атмосферном воздухе населённых мест составляет 0,01 мг/м 3 в соответствии с гигиеническими нормативами .
При утечке или же значительного количества едкий натр нейтрализуют слабым раствором кислоты. Нейтрализованный раствор направляют на и утилизацию .