Ланг, Генрих Готлоб
- 1 year ago
- 0
- 0
Фри́дрих Лю́двиг Го́тлоб Фре́ге ( нем. Friedrich Ludwig Gottlob Frege , 8 ноября 1848 , Висмар — 26 июля 1925 , Бад-Клайнен ) — немецкий логик , математик и философ . Представитель школы аналитической философии .
Сформулировал идею логицизма , то есть направление в основаниях математики и философии математики , основным тезисом которого является утверждение о «сводимости математики к логике».
Фреге родился в 1848 году в Висмаре , Мекленбург-Шверин (на сегодня — это часть Мекленбург-Передняя Померания ). Отец Фреге был учителем математики и директором средней школы для девочек. Фреге начал своё высшее образование в Йенском университете в 1869 году. Через два года он переехал в Гёттинген , где защитил в 1873 году диссертацию по математике « Über eine geometrische Darstellung der imaginären Gebilde in der Ebene » (О геометрическом представлении воображаемых объектов на плоскости).
После защиты диссертации он вернулся в Йену, где под руководством Аббе написал хабилитационную работу «Rechnungsmethoden, die sich auf eine Erweitung des Größenbegriffes gründen» (Методы расчётов, которые основаны на расширении понятия размерности) (1874) и получил место приват-доцента (1875). В 1879 году он стал экстраординарным , в 1896-м — ординарным профессором. Из его непосредственных учеников широко известен только Рудольф Карнап (впоследствии — один из членов Венского кружка и автор ряда важных работ по философии науки ). Поскольку все дети Фреге умерли до достижения зрелости, в 1905 году он взял в дом приёмного сына.
Популяризация его идей Карнапом, Бертраном Расселом и Людвигом Витгенштейном сделала Фреге известным в определенных кругах ещё в 1930-е годы. В англоязычном мире его работы стали широко известны только после Второй мировой войны , в значительной степени благодаря тому, что многие логики и философы, считавшие наследие Фреге важным вкладом в развитие философской мысли (например, Рудольф Карнап, Курт Гёдель и Альфред Тарский ), вынуждены были эмигрировать в США . Они способствовали появлению английских переводов основных работ Фреге, которые и принесли ему широкую известность.
Несмотря на то, что его образование и ранняя математическая работа были сосредоточены в основном на геометрии, работа Фреге вскоре начала затрагивать логику в большей степени. Им была написана книга под названием «Begriffsschrift» о логике. Цель Фреге состояла в том, чтобы показать, что истоки математики — логика, и при этом он разработал методы, которые вывели его далеко за пределы аристотелевской силлогистической и стоической логики высказываний, которая дошла до него в процессе изучения логики.
Вклад Фреге в логику многие сравнивают с вкладом Аристотеля , Курта Гёделя и Альфреда Тарского . Его революционное сочинение Begriffsschrift (Исчисление понятий) ( 1879 ) положило начало новой эпохе в истории логики. В Begriffsschrift Фреге с совершенно новых позиций пересмотрел ряд математических проблем, включая ясную трактовку понятий функции и переменных . Он, по сути дела, изобрел и аксиоматизировал логику предикатов , благодаря своему открытию кванторов , использование которых постепенно распространилось на всю математику и позволило решить средневековую проблему множественной общности . Эти достижения открыли дорогу к Бертрана Рассела и Principia Mathematica (написанной Расселом вместе с Альфредом Уайтхедом ) и к знаменитой гёделевской теореме о неполноте .
Фреге ввел различение между смыслом ( нем. Sinn ) и значением ( нем. Bedeutung ) понятия, обозначаемого определенным именем (так называемый треугольник Фреге или : знак—смысл—значение). Под значением в рамках его системы представлений понималась предметная область, соотнесенная с неким именем. Под смыслом подразумевается определенный аспект рассмотрения этой предметной области.
Например, некто может знать имена Марк Твен (Mark Twain) и Сэмюэл Клеменс (Samuel Clemens), не понимая, что они относятся к одному и тому же объекту, поскольку они «представляют его различными способами», что означает, что смысл их различен.
Первое в России исследование логико-арифметической концепции Готлоба Фреге предпринял математик в книге «Введение в методологию математики» , в которой он сделал вывод, что "природа математических объектов — это всего лишь те роли, которые они исполняют в объемлющей, аксиоматически заданной системе. Получается, что при аксиоматическом подходе «наличное бытие» индивидуальных предметов оказывается чем-то неуловимым, не поддающимся ни описанию, ни определению. Вследствие этого сама аксиоматическая система приобретает видимость своеобразной игры с символами", и поэтому позволяет посмотреть на концепцию Фреге не только с математической, но и с философской точки зрения .
«Попытка сведения арифметики к логике, предпринятая Готлобом Фреге, дает толчок к развитию математической логики и представляет собой один из первых примеров создания формально-логической языковой системы оснований (такие системы впоследствии получили название систем фреге-расселовского типа)… Обнаружение противоречивости фрегевской системы не препятствует Расселу развивать логицистскую концепцию, разработку которой начал Фреге. Рассел стремится избежать трудностей, с которыми столкнулись создатели теории множеств и Готлоб Фреге. Логицисты (Рассел и Уайтхед ), пытаясь свести всю „чистую“ математику к логике, достигают значительных результатов. Они разрабатывают формально-логическую языковую систему, средствами которой вполне выразимы основные законы, понятия и объекты чистой математики. И доказанная Гёделем позднее ограниченность формальных методов и невозможность создания непротиворечивой и полной (одновременно) формализованной системы арифметики (а также любой системы, содержащей арифметику) не может, тем не менее, умалить значимость рассмотренного периода становления и развития аналитической философии математики».