Инверсии магнитного поля Земли
- 1 year ago
- 0
- 0
Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики , сформулированная Андре Мари Ампером [ источник не указан 1000 дней ] в 1826 году [ источник не указан 1000 дней ] . В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой , и обобщил её ( ). Уравнение, представляющее собой содержание теоремы в этом обобщённом виде, входит в число уравнений Максвелла . (Для случая постоянных электрических полей — то есть в принципе в магнитостатике — верна теорема в первоначальном виде, сформулированная Ампером и приведённая в статье первой; для общего случая правая часть должна быть дополнена членом с производной напряжённости электрического поля по времени — см. ниже). Теорема гласит :
|
Эта теорема, особенно в иностранной или переводной литературе, называется также теоремой Ампера или законом Ампера о циркуляции (англ. Ampère’s circuital law). Последнее название подразумевает рассмотрение закона Ампера в качестве более фундаментального утверждения, чем закон Био — Савара — Лапласа , который в свою очередь рассматривается уже в качестве следствия (что, в целом, соответствует современному варианту построения электродинамики).
Для общего случая (классической) электродинамики формула должна быть дополнена в правой части членом, содержащим производную по времени от электрического поля (см. уравнения Максвелла , а также параграф « » ниже). В таком дополненном виде она представляет собой четвёртое уравнение Максвелла в интегральной форме.
В математической формулировке для магнитостатики теорема имеет следующий вид :
Здесь — вектор магнитной индукции , — плотность тока ; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Данная форма носит название интегральной, поскольку в явном виде содержит интегрирование . Теорема может быть также представлена в дифференциальной форме :
Эквивалентность интегральной и дифференциальной форм следует из теоремы Стокса .
Приведённая выше форма справедлива для вакуума. В случае применения её в среде (веществе), она будет корректна только в случае, если под j понимать вообще все токи, то есть учитывать и «микроскопические» токи, текущие в веществе, включая «микроскопические» токи, текущие в областях размерами порядка размера молекулы (см. диамагнетики ) и магнитные моменты микрочастиц (см.например ферромагнетики ).
Поэтому в веществе, если не пренебрегать его магнитными свойствами, часто удобно из полного тока выделить ток намагничения (см. ), выразив его через величину намагниченности и введя вектор напряжённости магнитного поля
Тогда теорема о циркуляции запишется в форме
где под (в отличие от в формуле выше) имеются в виду т. н. свободные токи, в которых ток намагничения исключён (что бывает удобно практически, поскольку — это обычно уже в сущности макроскопические токи, которые не связаны с намагничением вещества и которые в принципе нетрудно непосредственно измерить) .
В динамическом случае — то есть в общем случае классической электродинамики — когда поля меняются во времени (а в средах при этом меняется и их поляризация) — и речь тогда идёт об обобщённой теореме, включающей , — всё сказанное выше относится и к микроскопическим токам, связанным с изменениями поляризации диэлектрика. Эта часть токов тогда учитывается в члене .
Основным фундаментальным обобщением теоремы является четвёртое уравнение Максвелла . В интегральной форме оно является прямым обобщением на динамический случай магнитостатической формулы, приведённой выше. Для вакуума :
для среды :
(Как видим, формулы отличаются от приведённых выше только одним добавочным членом со скоростью изменения электрического поля в правой части).
Дифференциальная форма этого уравнения:
(в гауссовой системе, для вакуума и среды соответственно) — также можно при желании считать вариантом обобщения теоремы о циркуляции магнитного поля, поскольку она, конечно, тесно связана с интегральной.
Теорема о циркуляции играет в магнитостатике приблизительно ту же роль, что и теорема Гаусса в электростатике . В частности, при наличии определённой симметрии задачи, она позволяет просто находить величину магнитного поля во всём пространстве по заданным токам . Например, для вычисления магнитного поля от бесконечного прямолинейного проводника с током по закону Био — Савара — Лапласа потребуется вычислить неочевидный интеграл, в то время как теорема о циркуляции (с учётом осевой симметрии задачи) позволяет дать мгновенный ответ:
Если теорема о циркуляции магнитного поля не принимается в качестве аксиомы, то она может быть доказана с помощью закона Био — Савара — Лапласа . Рассмотрим магнитное поле, создаваемое в точке бесконечным проводом с током, заданным в пространстве кривой C. По закону Био — Савара — Лапласа токовый элемент провода, заданный радиус-вектором , создаёт в точке элементарное поле .
Полная индукция магнитного поля в точке получается интегрированием элементарного поля по всей кривой C в направлении течения тока:
Нужно сразу отметить, что полученный интеграл не относится ни к одному из двух родов криволинейных интегралов . Как можно заметить, он определяет собой векторную величину, тогда как любой криволинейный интеграл является скалярной величиной. Но допустим, что его всё-таки можно вычислить каким-нибудь способом (например, интегрированием отдельно каждой компоненты вектора). Тогда найдём циркуляцию полученного вектора индукции по некоторому замкнутому контуру Г, обхватывающему провод с током.
По определению циркуляция векторной функции — это криволинейный интеграл второго рода от этой функции по замкнутому контуру в положительном направлении обхода этой кривой. Будем считать положительным направлением нормали к поверхности, натянутой на контур, такое направление, которое образует острый угол с осью z. Тогда положительное направление обхода контура определяется правилом буравчика (правого винта) по отношению к положительной нормали. Будем также считать положительным тот ток, который течёт в направлении положительной нормали контура, охватывающего ток.
Циркуляция будет иметь вид:
Можно заметить, что под знаками интегралов появилось смешанное произведение векторов , которое по свойству кососимметрии может быть записано следующим образом:
Тогда циркуляция примет вид:
Нужно обратить внимание на то, чем является векторное произведение : его величина равна площади параллелограмма, построенного на этих векторах, а направление перпендикулярно этому параллелограмму. Тогда данное векторное произведение можно считать элементарной векторной площадкой поверхности, которую заметает вектор при двойном криволинейном интегрировании, причём угол между и , как можно заметить, является острым. Данная поверхность является цилиндрической поверхностью, охватывающей провод с током, а её сечением является контур циркуляции Г. Тогда двойной криволинейный интеграл можно заменить поверхностным интегралом второго рода по данной поверхности.
Тогда циркуляция примет вид:
Если считать поверхность интегрирования стягивающей поверхностью, легко видеть, что поверхностный интеграл представляет собой телесный угол для данной поверхности. Поверхность интегрирования условно можно считать замкнутой на бесконечности. И тогда, поскольку вектор при интегрировании всегда находится внутри поверхности, телесный угол является полным, то есть равным стерадиан. И тогда циркуляция равна .
Если бы контур Г не охватывал провод, тогда вектор при интегрировании никогда не находился бы полностью внутри поверхности интегрирования. В этом случае телесный угол был бы равен нулю, как и циркуляция поля: .
Последние два утверждения о телесном угле являются по сути содержанием теоремы Гаусса о потоке вектора напряжённости заряда через произвольную замкнутую поверхность и могут быть доказаны независимо.
Если бы ток тёк в противоположном направлении, угол между векторами и был бы уже тупым (нормаль была бы направлена внутрь поверхности), и циркуляция поменяла бы свой знак на противоположный, что эквивалентно течению тока в прежнем направлении, но с отрицательной силой.
В случае поля, создаваемого несколькими проводниками с током, нужно помнить о свойстве суперпозиции магнитного поля и свойстве аддитивности криволинейного интеграла: циркуляция суперпозиции векторов равна скалярной сумме циркуляций этих векторов.