Парашютная улица (Санкт-Петербург)
- 1 year ago
- 0
- 0
Тетрафторэтан — общее название двух изомеров: 1,1,2,2-тетрафторэтана и 1,1,1,2-тетрафторэтана. Оба изомера относятся к фторорганическим соединениям и являются фторуглеводородами этанового ряда. Оба изомера служат альтернативной заменой озоноразрушающим хлорфторуглеродам .
1,1,2,2-тетрафторэтан CF 2 H — CF 2 H (R 134, HFC 134). Озоноразрушающий потенциал (ODP) равен нулю, то есть он не разрушает озоновый слой. Температура кипения (-26,3° C). Торговая марка (СССР, РФ) — хладон-134. Хладон-134 служит основой озонобезопасного смесевого хладоагента СМ-1 (массовый состав, %: хладон-134 — 62,9; -32,6; н-бутан -4,5), который близок к хладону-12 ( дифтордихлорметану ) по теплофизическим характеристикам и хорошо растворяется в минеральном масле.
1,1,1,2-тетрафторэтан CF 3 —CFH 2 (R-134a, HFC-134a). Торговая марка (СССР, РФ) — хладон-134a, торговая марка США — фреон-134a. Символ a обозначает асимметрию молекулы тетрафторэтана — 1,1,2,2-тетрафторэтан — симметричен, 1,1,1,2-тетрафторэтан — асимметричен.
Метод синтеза 1,1,2,2-тетрафторэтана — каталитическое гидрирование тетрафторэтилена :
Метод синтеза 1,1,1,2-тетрафторэтана включает каталитическое гидрофторирование трихлорэтилена в две стадии :
Альтернативными методами синтеза 1,1,1,2-тетрафторэтана являются способы, основанные на фторировании органических соединений обеднённым гексафторидом урана. В качестве исходного органического сырья можно использовать 1,1-дифторэтилен (фтористый винилиден) :
или 1,1,1-трифторэтан (хладон-143a):
Тетрафторэтан совместим с большинством традиционно используемых конструкционных материалов, за исключением магния, свинца, цинка, и алюминиевых сплавов с содержанием магния более 2 %. Тесты на хранение R134a в присутствии воды показали хорошую гидролизную устойчивость на металлах, таких как алюминий, латунь, медь, ферритовая сталь и нержавеющая сталь V2A .
При действии тетрафторэтана на следующие пластмассы или эластомеры — наблюдается незначительное набухание: полиэтилен (PE), полипропилен (PP), поливинилхлорид (PVC), полиамид (PA), поликарбонат (PC), эпоксидная смола, политетрафторэтилен (PTFE), полиацетал (POM), хлорпренкаучук (CR), акрилнитрил-бутадиенкаучук (NBR) и гидрированный акрилнитрил-бутадиенкаучук (HNBR). Для уплотнений применимы материалы группы этилен-пропилен-диен-каучука (EPDM). Уплотнения из фторкаучука для R134a не рекомендуются. При выборе материала для уплотнений холодильных установок следует соблюдать их совместимость с планируемым к использованию смазочным материалом, в частности, полиэфирное масло может оказаться несовместимым с маслобензостойкой резиной, которая сама по себе устойчива к тетрафторэтану. Также следует учитывать фактор возможного охлаждения уплотнения; например, химически инертный поливинилхлорид при отрицательных температурах теряет эластичность.
R134a совместим с рядом уплотняющих материалов, например: как «Хайпалон 48», «Буна-Н», «Нордел», «Неопрен», а также со шлангами, футерованными внутри нейлоном (полиамидом) или неопреном.
Молекула тетрафторэтана (хладоагент R134a) имеет меньшие размеры, чем молекула тетрафторметана (хладоагент R12), что делает более значительной опасность утечек. При попадании воздуха в систему и сжатии могут образовываться горючие смеси .
Из-за значительного потенциала глобального потепления GWP рекомендуется применять тетрафторэтан в герметичных холодильных системах. Влияние тетрафторэтана на парниковый эффект в 1300 раз сильнее, чем у СО 2 .
Например, выброс в атмосферу одной заправки тетрафторэтана из бытового холодильника (около 140 г) соответствует выбросу 170 кг СО 2 . Так как в Европе в среднем 448 г. СО 2 образуется при производстве 1 кВт×ч энергии, таким образом этот выброс соответствует производству 350 кВт×ч энергии.