Interested Article - Циркулятор

Циркулятор (на фото крайняя правая микросборка) — устройство СВЧ, выполненное с использованием микрополосковой технологии.
Обозначение Y-циркулятора по стандартам ANSI и IEC.

Циркуля́тор ( лат. circulare «ходить по кругу») — согласованный недиссипативный невзаимный многополюсник , в котором передача мощности происходит в одном направлении с входа 1 на вход 2, с входа 2 на вход 3 и т. д., с входа с наибольшим номером — на вход 1 . Чаще всего применяются шестиполюсные и восьмиполюсные циркуляторы (т. е., соответственно, с тремя и четырьмя входами, называемые Y- и X-циркуляторами). Циркуляторы применяются в качестве развязывающих устройств (функциональных узлов СВЧ), например: для одновременного использования общей антенны на передачу и на прием; в параметрических усилителях; в схемах сложения мощностей генераторов.

Наиболее значимыми радиотехническими характеристиками циркулятора являются прямые потери (вносимое затухание)

A пр = P 1+ / P 2− = P 2+ / P 3− = P 3+ / P 1−

и обратные потери (переходное ослабление, развязка плеч)

A обр = P 1+ / P 3− = P 2+ / P 1− = P 3+ / P 2− ,

которые принято указывать в децибелах . Этот пример приведён для Y-циркулятора; знак плюс указывает, что соответствующая мощность вводится в циркулятор, знак минус указывает, что мощность — выходная. В рабочем диапазоне частот хороший циркулятор обладает обычно следующими параметрами: A пр ≤ 0,5 дБ ; A обр ≥ 30 дБ .

Классификация

  • По роду сигнала циркуляторы бывают для радиодиапазона и оптические (волоконно-оптические)
  • Циркуляторы радиодиапазона различаются по принципу действия — ферритовые и электронные, а также по типу подключаемых линий — волноводные, коаксиальные и встраиваемые микрополосковые.

Циркуляторы радиодиапазона

Электронные циркуляторы

В электронных циркуляторах используется способность некоторых активных фазовращателей создавать необратимый фазовый сдвиг в π радиан (см. также Фазоинвертор ). Такие циркуляторы выполняют на основе интегральных микросхем или дискретных элементов — транзисторов , диодов , резисторов . Электронные циркуляторы применяются на частотах от нескольких герц до нескольких десятков мегагерц.

Ферритовые циркуляторы

Принцип работы циркулятора основан на уникальных свойствах некоторых специальных марок феррита , которые появляются при его смещении постоянным магнитным полем. Существует несколько конструкций циркуляторов.

Ферритовые циркуляторы не требуют источника питания и работают на значительно более высоких мощностях, чем активные. Также выше их рабочий частотный диапазон. При этом на низких частотах их габариты могут оказаться неприемлемо большими.

Волоконно-оптические циркуляторы

Оптические циркуляторы работают с электромагнитными колебаниями оптического диапазона. Схемы оптических циркуляторов трёхполюсные: свет, приходящий на порт 1, выводится через порт 2, но свет, приходящий на порт 2, выводится через порт 3. Это свойство позволяет использовать оптические циркуляторы в качестве разветвителей в дуплексных волоконно-оптических системах связи , а также в усилителях оптического сигнала. Оптический циркулятор, в принципе, может использоваться в качестве оптического изолятора , если свет, выходящий из порта 3 никуда не подводить. Преимущество оптического циркулятора перед простым волоконно-оптическим разветвителем со сваренными сердцевинами заключается в малых потерях энергии света (менее 1 дБ), а также в отсутствии отражения.

Принцип работы оптического циркулятора основан на эффекте Фарадея : при прохождении света через некоторые материалы, находящиеся в постоянном магнитном поле, плоскость поляризации поворачивается на определённый угол, зависящий от частоты света. При этом направление поворота не зависит от того, распространяется свет от порта 1 к порту 2 или наоборот. Дополнив устройство системой двулучепреломляющих элементов (полуволновой пластиной и поляризаторами с пространственным смещением света), мы получим оптический циркулятор.

Примеры

  • ММЦ 7-1 — 6,6…7,2 ГГц, микрополосковый встраиваемый
  • ММЦ 9-1 — 9,1…10,2 ГГц, микрополосковый встраиваемый
  • ММЦ 16-2 — 14,5…16,5 ГГц, микрополосковый встраиваемый
  • RADIAL C-50A — 300…360 МГц, коаксиальный
  • RADIAL C-125U — 400…490 МГц, коаксиальный
  • RADIAL C-300V — 140…174 МГц, коаксиальный
  • HG 3061 — 270…330 МГц, коаксиальный
  • LG 3061 — 1340…1620 МГц, коаксиальный
  • SG 3041 — 2300…2500 МГц, коаксиальный
  • CIR229-1 — 3,50…4,40 ГГц, волноводный
  • CIR75-1 — 10,00 — 15,00 ГГц, волноводный
  • CIR75-2 — 37,30…39,20 ГГц, волноводный
  • YC-1100-155 — 1530…1565 нм, оптический
  • YC-1100-159 — 1570…1610 нм, оптический

Основные нормируемые характеристики

  • Рабочая частота (длина волны)
  • Полоса пропускания
  • Предельная рабочая мощность
  • КСВн входов
  • Вносимые прямые потери
  • Развязка (обратные потери)
  • Диапазон рабочих температур
  • Способ включения в тракт (вид разъёмов)
  • Массогабаритные показатели
  • Устойчивость к внешнему постоянному магнитному полю
  • Срок службы, определяемый старением постоянного магнита

Литература и документация

Литература

  • 1981
  • 1990
  • 1973
  • Вольман В. И., Пименов Ю. В. Техническая электродинамика — М.: Связь, 1971
  • Милованов О. С., Собенин Н. П. Техника сверхвысоких частот — М.: Атомиздат, 1980
  • Вальднер О. А., Милованов О. С., Собенин Н. П. Техника сверхвысоких частот. Учебная лаборатория — М.: Атомиздат, 1974
  • Белоцерковский Г. Б. Основы радиотехники и антенны. Ч. 2. Антенны — М.: Радио и связь, 1983
  • Портнов Э. Л. Оптические кабели связи и пассивные компоненты волоконно-оптических линий связи — М: Горячая линия — Телеком, 2007
  • Картвелишвили К. З. (соавторы Данелиа А. Г., Гарибашвили Д. И.) Оптический циркулятор и его возможности для измерительной техники — Измерительная техника, № 8, 1997

Нормативно-техническая документация

  • ГОСТ 5.758-71 Циркулятор коаксиальный низкого уровня мощности типа 30 ЦК-6. Требования к качеству аттестованной продукции
  • ГОСТ 5.1909-73 Циркулятор коаксиальный со встроенной нагрузкой типа 40 ЦК-Р1. Требования к качеству аттестованной продукции
  • ГОСТ Р 50730.1…5 Приборы ферритовые СВЧ
  • ОСТ11-480.005.7-83 Приборы ферритовые СВЧ. Методы измерения развязок трехплечных циркуляторов на низком уровне мощности
  • ОСТ11-480.005.8-84 Приборы ферритовые СВЧ. Метод измерения развязок трехплечных циркуляторов на высоком уровне мощности
  • ТУ 11-ПЯ0.223.143ТУ-86 Циркуляторы полосковые
  • ТУ 11-ПЯ0.223.150ТУ-85 Циркуляторы волноводные ФЦВ1-28А, ФЦВ1-28Б, ФЦВ1-29, ФЦВ2-44, ФЦВ2-45, ФЦВ2-46, ФЦВ2-47, ФВЦН2-17
  • ТУ 11-ПЯ2.238.489ТУ-81 Циркуляторы коаксиальные ФЦК3-44, ФЦК3-44-1, ФЦК3-44-2
  • IEC 62077(2001) Циркуляторы волоконно-оптические. Общие технические условия

Примечания

  1. Д. М. Сазонов. Антенны и устройства СВЧ. М.: Высшая школа, 1988. С. 168.

Ссылки

  • (недоступная ссылка) (Ссылка не работает?)

См. также

Источник —

Same as Циркулятор