Interested Article - Прямое восстановление железа


- 2020-04-14
- 1

Прямо́е восстановле́ние желе́за — это восстановление железа из железной руды или окатышей с помощью газов (СО, Н 2 , NH 3 ), твёрдого углерода , газов и твёрдого углерода совместно. Процесс ведётся при температуре около 1000 °C, при которой пустая порода руды не доводится до шлакования , примеси ( Si , Mn , P , S ) не восстанавливаются, и металл получается чистым . В литературе также встречаются термины: металлизация (частичная металлизация) руд, прямое получение железа, бездоменная (внедоменная) металлургия железа, бескоксовая металлургия железа . Продукт процесса называют железом прямого восстановления (DRI от англ. Direct Reduced Iron ).
История
Попытки получить сталь минуя доменный процесс предпринимались в СССР ещё с 1950-х годов . Промышленное производство железа непосредственно из руды, минуя доменный (с использованием кокса) процесс, появилось в 1970-х годах . Первые установки прямого восстановления железа были малопроизводительны, а конечный продукт имел сравнительно много примесей. Широкое распространение этого процесса началось в 1980-х годах , когда в горно-металлургическом комплексе началось широкое применение природного газа , который идеально подошёл для прямого восстановления железной руды. Кроме того, помимо природного газа, в процессе прямого восстановления железа оказалось возможным использование продуктов газификации углей (в частности бурых ), попутного газа нефтедобычи и другого топлива-восстановителя.
Технологические изменения, произошедшие в 1990-е годы , позволили значительно снизить капитало- и энергоёмкость различных процессов прямого восстановления железа, в результате чего произошёл новый скачок в производстве продукции DRI (от англ. Direct Reduction of Iron ) .
Классификация процессов



Наиболее предпочтительной, по мнению большинства специалистов, является классификация по виду получаемого продукта:
- получение частично металлизованных (степень металлизации 30—50 %) материалов для доменных печей;
- получение высокометаллизованного продукта (степень металлизации 85—95 %) в твёрдом виде (губчатого железа) для переплавки в сталеплавильных агрегатах с получением стали ;
- получение металлизованного продукта в пластическом состоянии ( кричного железа) для различных целей, в том числе как вариант пирометаллургического обогащения труднообогатимых, бедных и комплексных руд;
- получение жидкого металла (чугуна или полупродукта) для переплава в сталеплавильных печах .
Сравнение с доменным процессом
Возможности переработки бедных железных руд
Доменный процесс обеспечивает получение кондиционного чугуна из железных руд с любым содержанием железа, при этом содержание железа влияет лишь на технико-экономические показатели процесса. Металлизация бедных руд может быть эффективна лишь для получения кричного железа и жидкого металла. Частично металлизованные материалы и губчатое железо получать из бедных руд неэффективно. При получении частично металлизованных материалов из бедных руд необходимо затратить большее количество тепла на нагрев пустой породы и увеличить расход восстановителя. Производство губчатого железа из руд, содержащих более 2,5—3,0 % пустой породы, приводит к резкому росту расхода электроэнергии в процессе плавки металлизованных окатышей из-за резкого увеличения количества шлака .
Наличие примесных элементов
Доменная печь в состоянии полностью обеспечить получение кондиционного по сере чугуна. Удаление из чугуна меди, фосфора, мышьяка в доменной печи невозможно. Низкотемпературные процессы получения губчатого железа не обеспечивают удаления попутных элементов, то есть все попутные элементы, присутствующие в исходной руде, остаются в губчатом железе и попадают в сталеплавильный агрегат. Это же относится к получению кричного металла (здесь возможна некоторая степень удаления серы). Получение жидкого металла позволяет удалить из процесса летучие элементы (цинк, щелочные металлы), а степень удаления серы, мышьяка и фосфора зависит от режима процесса .
Физические свойства руды
В доменной печи перерабатывают исключительно кусковой железорудный материал, причём размер кусков не должен быть менее 3—5 мм. Отсюда вытекает необходимость процесса окускования руд. Это требование остаётся обязательным для процессов получения губчатого и кричного железа в шахтных и вращающихся печах. Низкотемпературная металлизация измельчённых руд возможна в специальных агрегатах (например, аппараты кипящего слоя). Для большинства способов внедоменного получения жидкого металла размер кусков руды не имеет значения, поэтому возможно исключение из металлургического передела дорогостоящих процессов окускования мелких руд .
Использование недефицитных видов топлива
Современные доменные печи в качестве топлива используют только металлургический кокс . Прежде всего это связано с высокими прочностными качествами кокса, сохраняющимися при высоких температурах. Ни один из известных ныне (2007 год) видов твёрдого топлива не может в этом отношении конкурировать с коксом. Большинство известных способов и технологий металлургии железа не требуют использования кокса в качестве компонента шихты. Могут быть использованы полученные различным способом восстановительные газы (в основном при производстве губчатого железа), недефицитные виды каменного угля, бурые угли и продукты их переработки, нефтепродукты и др.
Использование новых видов энергии
Несмотря на то что использование энергии плазмы, атомной и других новых источников энергии для доменного производства не исключается, наибольший эффект от их применения наблюдается при внедоменном получении металла. Это повышает шансы новых технологий в конкуренции с доменным процессом в будущем .
Технология
Процессы получения губчатого железа осуществляются при умеренных температурах с использованием газообразного или твёрдого восстановителя в различных агрегатах: шахтных, трубчатых, туннельных, муфельных , отражательных , электронагревательных печах, ретортах периодического действия, конвейерных машинах, реакторах с кипящим слоем и др. Иногда эти агрегаты соединены в комплексы, в которых наиболее часто сочетаются с электропечью (электродоменной или дуговой ) для получения жидкого металла (чугуна и стали ). Чаще всего губчатое железо применяют как высокочистую добавку к стальному лому . Наиболее стабильный спрос на губчатое железо отмечается в странах с недостаточными мощностями доменного производства и поставками стального лома.
Основными процессами, используемыми на работающих, строящихся и проектных установках для производства губчатого железа, являются процессы с применением шахтных печей и реторт периодического действия. Процессы с использованием вращающихся печей и твёрдого восстановителя находят промышленное применение, главным образом, при переработке металлургических отходов — пылей и шламов, которые содержат примеси цинка, свинца и др., а также комплексных железных руд (богатых титаном, хромом, никелем, марганцем и др.), не пригодных для использования в доменных печах. Процессы в кипящем слое получили меньшее распространение в связи с целым рядом специфических особенностей (жёсткие требования к гранулометрическому составу , газодинамические ограничения существования кипящего слоя, температурные условия и др.).
Процессы металлизации в шахтных печах во многом похожи на процессы, протекающие в шахте доменных печей в области умеренных температур. Однако имеются и значительные отличия: в шахтной печи отсутствует кокс; важную роль в процессах восстановления оксидов железа играет водород; восстановительный газ является единственным источником тепла, обеспечивающим все тепловые потребности процесса.
В процессе восстановления окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии газа (твёрдого топлива), которые содержат водород . Водород легко восстанавливает железо :
- ,
при этом не происходит загрязнения железа такими примесями как сера и фосфор , которые являются обычными примесями в каменном угле . Железо получается в твёрдом виде и в дальнейшем переплавляется в электрических печах. Для получения тонны железа прямым восстановлением из руды необходимо затратить примерно 1000 м 3 водорода.
По своей сути процесс прямого восстановления железа является восстановлением железа из руд , минуя доменный процесс , то есть кокс в процессе не участвует.
Наиболее отработанным и широко распространённым процессом является процесс Midrex . С 1983 года на Оскольском электрометаллургическом комбинате работают четыре модуля процесса металлизации Midrex общей мощностью 1700 тыс. т металлизованных окатышей в год. В состав каждого модуля входят: шахтная печь металлизации, реформер (реактор конверсии природного газа); система производства инертного газа; система аспирации. Система водного хозяйства, свеча, помещение пульта управления и электроснабжение являются общими для каждой пары модулей.
Шахтная печь для металлизации состоит из загрузочного (промежуточного) бункера; верхнего динамического затвора с загрузочным распределителем и загрузочными трубами; зоны восстановления; промежуточной зоны; зоны охлаждения; огнеупорной футеровки; постоянно действующих питателей; нижнего динамического затвора и маятникового питателя (для выгрузки готового продукта) .
Продукты прямого восстановления


Губчатое железо
Губчатым железом называют продукт, который получают в результате восстановления железорудного материала без его плавления при температуре менее 1000—1200° С. В зависимости от вида исходного сырья губчатое железо представляет собой пористые куски восстановленной руды (редко агломерата ) или окатыши, а в некоторых случаях — металлический порошок. Поскольку при восстановлении объёмные изменения материала сравнительно невелики, плотность губчатого железа меньше плотности сырья, а пористость велика. Обычно кажущаяся плотность кускового губчатого железа 2—4 г/см 3 , а пористость 50—80 %.
В некоторых процессах восстановления мелкой руды, окалины или концентрата в неподвижном слое (например, в процессе Хоганес) происходит одновременное спекание исходного порошкового материала. Плотность образующегося брикета до некоторой степени зависит от температуры восстановления. Вследствие малой плотности губчатого железа насыпная масса его получается меньшей по сравнению с ломом, что приводит иногда к необходимости брикетирования (прессования) перед плавкой. Брикетирование проводят на прессах различного типа при удельных давлениях 1—3 тс/см 2 ; при этом получают плотность брикетов до 5 г/см 3 .
Сильно развитая поверхность и высокая сообщающаяся пористость губчатого железа вызывают его повышенную окисляемость при хранении и транспортировке в неблагоприятных атмосферных условиях, хотя имеющиеся по этому вопросу данные противоречивы. Брикетирование уменьшает окисляемость.
Химический состав губчатого железа определяется в основном составом сырья. По сравнению с ломом оно значительно чище по содержанию примесей цветных металлов . Содержание пустой породы в нём выше, чем в исходной руде, пропорционально степени восстановления. Обычно сырьём служат богатые руды или концентраты, поэтому губчатое железо не подвергают дополнительной очистке и оно содержит все примеси пустой породы сырья. При получении губчатого железа из бедного сырья его подвергают обогащению магнитной сепарацией .
Губчатое железо используют для плавки стали (главным образом в электропечах), цементации меди (осаждения её из сернокислых растворов) и получения железного порошка.
Металлизованная шихта
Металлизованной шихтой называют частично восстановленное железорудное сырьё, применяемое в доменной печи и в кислородных конвертерах для охлаждения плавки (взамен руды и лома). Степень восстановления металлизованной шихты обычно не превышает 80 %, в то время как для губчатого железа она чаще всего не бывает ниже 90 %.
Кричное железо
Кричное железо, производимое сейчас, отличается от той крицы , которую несколько веков назад получали в кричных горнах в виде больших кусков и проковывали непосредственно в изделия. Кричное железо в настоящее время производят в трубчатых вращающихся печах из бедных железных и железо-никелевых руд восстановлением их при 1100—1200 °С. Оно представляет собой довольно мелкие (крупностью 1—15 мм) металлические частицы с механическими примесями и включениями шлака . Количество шлаковых примесей в зависимости от схемы измельчения и магнитной сепарации промежуточного продукта составляет 10—25 %. При переработке хромо-никелевых руд получаемая крица содержит никель. Обычно крица имеет также высокое содержание фосфора и серы. Как правило, крицу используют в доменных печах, а в некоторых странах — в электропечах для выплавки стали или ферроникеля .
Чугун или углеродистый полупродукт
Чугун или углеродистый полупродукт получают во вращающихся печах или в электропечах, прямо связанных с печью восстановления, где восстановителем является твёрдое топливо. Чугун, полученный внедоменными методами, не отличается от обычного доменного ; в ряде случаев получают полупродукт с меньшим содержанием некоторых примесей, чем в чугуне. Передел чугуна и полупродукта на сталь производится в известных сталеплавильных агрегатах без затруднений, а в случае полупродукта — с несколько меньшими затратами, чем передел доменного чугуна .
Реализованные на практике процессы и их агрегаты
- Твёрдое восстановление
Восстановление газом
- Сырьё (Окисленные окатыши и кусковая руда) → Шахтные печи (Purofer, Midrex, Arex, Hyl III, Hyl ZR)
- Сырьё (Окисленные окатыши и кусковая руда) → Реторты (Hyl I)
- Сырьё (Рудная мелочь, отходы) → Реакторы с кипящим слоем (Fior, Finmet, Cincored, Spirex, Iron Carbide)
Восстановление углём
- Трубчатые печи (OSI, TDR, DRC,Ghaem, SL/RN, Jindal, Siil,Codir)
- Печи с вращающимся подом (Comet, Fastmet, Inmetco, Dry Iron, Iron Dinamics)
- Реактор с кипящим слоем (Circofer)
- Многоподовая вращающаяся печь (Primus)
- Жидкофазное восстановление
- Процессы с плавильным генератором ( Corex , Finex)
- Процессы в жидкой ванне (DIOS, Romelt (также известен как процесс ПЖВ), Hismelt, AusIron, Tecnored, AISI Direct, Ironmaking, CCF)
- Струйно-эмиссионные процессы (ИРСИД, БИСРА, СЭР)
- Прочие процессы
- Доред, Krupp-Renn, Экеторп-Валлак, способ Буше, процесс в кипящем шлаковом слое Кавасаки, COIN
См. также
Ссылки
Примечания
- , с. 178.
- , с. 5—6.
- . Дата обращения: 10 октября 2018. 16 августа 2016 года.
- , с. 4—5.
- ↑ , с. 7.
- , с. 7—8.
- ↑ , с. 8.
- , с. 8—9.
- , с. 180—181.
- , с. 12—13.
- ↑ , с. 18.
- , с. 24.
Литература
- Юсфин Ю. С. , Гиммельфарб А. А. , Пашков Н. Ф. Новые процессы производства металла / рецензенты: В. И. Логинов , С. Е. Лазуткин . — М. : Металлургия, 1994. — 320 с. — 2000 экз. — ISBN 5-229-02229-X .
- Ходосов И. Е. . — Новокузецк: на правах рукописи, 2016. — 164 с.
- Князев В. Ф. , Гиммельфарб А. И. , Неменов А. М. Бескоксовая металлургия железа. — Москва: Металлургия, 1972. — 272 с.
- Юсфин Ю. С. , Пашков Н. Ф. Металлургия железа: учебник для вузов / рецензент Г. Н. Еланский . — М. : ИКЦ «Академкнига», 2007. — 464 с. — 2000 экз. — ISBN 978-5-94628-246-8 .
- Рыбенко И. А. . — Новокузецк: на правах рукописи, 2018. — 308 с.

- 2020-04-14
- 1