Ниже приведён список
интегралов
(
первообразных
функций) от
экспоненциальной функции
. В списке везде опущена константа интегрирования.
Неопределённые интегралы
∫
e
c
x
d
x
=
1
c
e
c
x
{\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}}
∫
a
c
x
d
x
=
1
c
ln
a
a
c
x
,
{\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx},}
для
a
>
0
,
a
≠
1
{\displaystyle a>0,a\neq 1}
∫
x
e
c
x
d
x
=
e
c
x
c
2
(
c
x
−
1
)
{\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)}
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
{\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
{\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx}
∫
e
c
x
d
x
x
=
ln
|
x
|
+
∑
i
=
1
∞
(
c
x
)
i
i
⋅
i
!
{\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}}
∫
e
c
x
d
x
x
n
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
d
x
x
n
−
1
)
,
{\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}dx}{x^{n-1}}}\right),}
для
n
≠
1
{\displaystyle n\neq 1}
∫
e
c
x
ln
x
d
x
=
1
c
e
c
x
ln
|
x
|
−
Ei
(
c
x
)
{\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
∫
e
c
x
sin
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
sin
b
x
−
b
cos
b
x
)
{\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}
∫
e
c
x
cos
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
cos
b
x
+
b
sin
b
x
)
{\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}
∫
e
c
x
sin
n
x
d
x
=
e
c
x
sin
n
−
1
x
c
2
+
n
2
(
c
sin
x
−
n
cos
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
sin
n
−
2
x
d
x
{\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;dx}
∫
e
c
x
cos
n
x
d
x
=
e
c
x
cos
n
−
1
x
c
2
+
n
2
(
c
cos
x
+
n
sin
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
cos
n
−
2
x
d
x
{\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx}
∫
x
e
c
x
2
d
x
=
1
2
c
e
c
x
2
{\displaystyle \int xe^{cx^{2}}\;dx={\frac {1}{2c}}\;e^{cx^{2}}}
∫
1
σ
2
π
e
−
(
x
−
μ
)
2
/
2
σ
2
d
x
=
1
2
(
1
+
erf
x
−
μ
σ
2
)
,
{\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2}}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}}),}
где
erf(…)
—
функция ошибок
Определённые интегралы
∫
0
1
e
x
⋅
ln
a
+
(
1
−
x
)
⋅
ln
b
d
x
=
∫
0
1
(
a
b
)
x
⋅
b
d
x
=
∫
0
1
a
x
⋅
b
1
−
x
d
x
=
a
−
b
ln
a
−
ln
b
{\displaystyle \int \limits _{0}^{1}e^{x\cdot \ln a+(1-x)\cdot \ln b}\;\mathrm {d} x=\int \limits _{0}^{1}\left({\frac {a}{b}}\right)^{x}\cdot b\;\mathrm {d} x=\int \limits _{0}^{1}a^{x}\cdot b^{1-x}\;\mathrm {d} x={\frac {a-b}{\ln a-\ln b}}}
для
a
>
0
,
b
>
0
,
a
≠
b
{\displaystyle a>0,\ b>0,\ a\neq b}
, что есть
∫
0
∞
e
−
a
x
d
x
=
1
a
{\displaystyle \int \limits _{0}^{\infty }e^{-ax}\,\mathrm {d} x={\frac {1}{a}}}
∫
0
∞
e
−
a
x
2
d
x
=
1
2
π
a
(
a
>
0
)
{\displaystyle \int \limits _{0}^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a}}\quad (a>0)}
(
интеграл Гаусса
)
∫
−
∞
∞
e
−
a
x
2
d
x
=
π
a
(
a
>
0
)
{\displaystyle \int \limits _{-\infty }^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\sqrt {\pi \over a}}\quad (a>0)}
∫
−
∞
∞
e
−
a
x
2
e
b
x
d
x
=
π
a
e
b
2
a
4
(
a
>
0
)
{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}e^{bx}\,\mathrm {d} x={\sqrt {\frac {\pi }{a}}}e^{\frac {b^{2}}{a4}}\quad (a>0)}
∫
−
∞
∞
x
e
−
a
(
x
−
b
)
2
d
x
=
b
π
a
(
a
>
0
)
{\displaystyle \int \limits _{-\infty }^{\infty }xe^{-a(x-b)^{2}}\,\mathrm {d} x=b{\sqrt {\pi \over a}}\quad (a>0)}
∫
−
∞
∞
x
2
e
−
a
x
2
d
x
=
1
2
π
a
3
(
a
>
0
)
{\displaystyle \int \limits _{-\infty }^{\infty }x^{2}e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a^{3}}}\quad (a>0)}
∫
0
∞
x
n
e
−
a
x
2
d
x
=
{
1
2
Γ
(
n
+
1
2
)
/
a
n
+
1
2
(
n
>
−
1
,
a
>
0
)
(
2
k
−
1
)
!
!
2
k
+
1
a
k
π
a
(
n
=
2
k
,
k
целое
,
a
>
0
)
k
!
2
a
k
+
1
(
n
=
2
k
+
1
,
k
целое
,
a
>
0
)
{\displaystyle \int \limits _{0}^{\infty }x^{n}e^{-ax^{2}}\,\mathrm {d} x={\begin{cases}{\frac {1}{2}}\Gamma \left({\frac {n+1}{2}}\right)/a^{\frac {n+1}{2}}&(n>-1,a>0)\\{\frac {(2k-1)!!}{2^{k+1}a^{k}}}{\sqrt {\frac {\pi }{a}}}&(n=2k,k\;{\text{целое}},a>0)\\{\frac {k!}{2a^{k+1}}}&(n=2k+1,k\;{\text{целое}},a>0)\end{cases}}}
(!! —
двойной факториал
)
∫
0
∞
x
n
e
−
a
x
d
x
=
{
Γ
(
n
+
1
)
a
n
+
1
(
n
>
−
1
,
a
>
0
)
n
!
a
n
+
1
(
n
=
0
,
1
,
2
,
…
,
a
>
0
)
{\displaystyle \int \limits _{0}^{\infty }x^{n}e^{-ax}\,\mathrm {d} x={\begin{cases}{\frac {\Gamma (n+1)}{a^{n+1}}}&(n>-1,a>0)\\{\frac {n!}{a^{n+1}}}&(n=0,1,2,\ldots ,a>0)\\\end{cases}}}
∫
0
∞
e
−
a
x
sin
b
x
d
x
=
b
a
2
+
b
2
(
a
>
0
)
{\displaystyle \int \limits _{0}^{\infty }e^{-ax}\sin bx\,\mathrm {d} x={\frac {b}{a^{2}+b^{2}}}\quad (a>0)}
∫
0
∞
e
−
a
x
cos
b
x
d
x
=
a
a
2
+
b
2
(
a
>
0
)
{\displaystyle \int \limits _{0}^{\infty }e^{-ax}\cos bx\,\mathrm {d} x={\frac {a}{a^{2}+b^{2}}}\quad (a>0)}
∫
0
∞
x
e
−
a
x
sin
b
x
d
x
=
2
a
b
(
a
2
+
b
2
)
2
(
a
>
0
)
{\displaystyle \int \limits _{0}^{\infty }xe^{-ax}\sin bx\,\mathrm {d} x={\frac {2ab}{(a^{2}+b^{2})^{2}}}\quad (a>0)}
∫
0
∞
x
e
−
a
x
cos
b
x
d
x
=
a
2
−
b
2
(
a
2
+
b
2
)
2
(
a
>
0
)
{\displaystyle \int \limits _{0}^{\infty }xe^{-ax}\cos bx\,\mathrm {d} x={\frac {a^{2}-b^{2}}{(a^{2}+b^{2})^{2}}}\quad (a>0)}
∫
0
2
π
e
x
cos
θ
d
θ
=
2
π
I
0
(
x
)
{\displaystyle \int \limits _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}
(
I
0
{\displaystyle I_{0}}
— модифицированная
функция Бесселя
первого рода)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
d
θ
=
2
π
I
0
(
x
2
+
y
2
)
{\displaystyle \int \limits _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}
∫
0
∞
x
s
−
1
e
x
−
1
d
x
,
=
Γ
(
s
)
ζ
(
s
)
{\displaystyle \int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,dx,=\Gamma (s)\zeta (s)}
(
Дзета-функция Римана
)
Библиография
Книги
Градштейн И. С., Рыжик И. М.
(рус.)
. — 4-е изд. —
М.
: Наука, 1963.
Двайт Г. Б.
Таблицы интегралов
(рус.)
. —
СПб.
: Издательство и типография АО ВНИИГ им. Б. В. Веденеева, 1995. — 176 с. —
ISBN 5-85529-029-8
.
Zwillinger D.
CRC Standard Mathematical Tables and Formulae
(англ.)
. — 31st ed. — 2002. —
ISBN 1-58488-291-3
.
Справочник по специальным функциям с формулами, графиками и таблицами / Под ред. М. Абрамовица и И. Стиган; пер. с англ. под ред. В. А. Диткина и Л. Н. Карамзиной. —
М.
: Наука, 1979. — 832 с. —
50 000 экз.
Корн Г. А., Корн Т. М.
. —
М.
: «
Наука
», 1974. — 832 с.
Таблицы интегралов
Вычисление интегралов
Списки интегралов по типам функций