Interested Article - Игра с неполной информацией
- 2020-03-21
- 1
Байесовская игра ( англ. Bayesian game ) или игра с неполной информацией ( англ. incomplete information game ) в теории игр характеризуются неполнотой информации о соперниках (их возможных стратегиях и выигрышах), при этом у игроков есть веры относительно этой неопределённости. Байесовскую игру можно преобразовать в игру полной , но информации, если принять допущение об общем априорном распределении. В отличие от неполной информации, несовершенная информация включает знание стратегий и выигрышей соперников, но история игры (предыдущие действия оппонентов) доступна не всем участникам.
Джон Харсаньи описал байесовские игры следующим образом . В дополнение к фактическим участникам игры появляется виртуальный игрок « Природа ». Природа наделяет каждого из фактических участников случайной переменной , значения которой называются типами . Распределение ( плотность или функция вероятности) типов для каждого из игроков известно. В начале игры природа «выбирает» типы игроков. Тип, в частности, определяет функцию выигрыша участника. Таким образом, неполнота информации в байесовской игре — незнание по крайней мере одним игроком типа некого другого участника. Игроки обладают верами относительно типов соперников; вера — вероятностное распределение на множестве возможных типов. В процессе игры веры обновляются в соответствии с теоремой Байеса .
Определение
Игра определяется так: , где
- — множество игроков.
- — множество состояний природы. Пример состояния природы: порядок колоды в карточной игре.
- — множество действий игрока . Пусть .
- — множество типов игрока . Тип определяется по правилу .
- определяет доступные действия для игрока , обладающего неким типом в .
- функция выигрыша игрока . Более формально, пусть , и .
- распределение вероятности на для каждого игрока , то есть каждый игрок по-разному оценивает вероятности состояний природы; в течение игры они его не знают.
Чистая стратегия должна удовлетворять для всех . Стратегия каждого игрока зависит только от его типа, так как типы других игроков для него скрыты. Ожидаемый выигрыш игрока при данном стратегическом профиле равен .
Пусть — множество чистых стратегий,
Байесовское равновесие игры определяется как равновесие Нэша (возможно, в смешанных стратегиях) игры . Если игра конечна, байесовское равновесие существует всегда.
Примеры
Дилемма шерифа
Шериф сталкивается с подозреваемым. Оба должны одновременно принять решение о том, следует ли стрелять.
Подозреваемый имеет два возможных типа: «преступник» и «законопослушный». У шерифа есть только один тип. Подозреваемому известен его тип, шерифу же он неведом. Таким образом, в игре присутствует неполная информация, она относится к классу байесовских. По мнению шерифа, с вероятностью p подозреваемый является преступником, с вероятностью 1-p — законопослушным гражданином. Величины p и 1-p известны обоим игрокам, поскольку делается допущение об общем априорном распределении. Именно оно позволяет преобразовать эту игру в игру полной, но несовершенной информации.
Шериф предпочёл бы стрелять, если стреляет подозреваемый, и избежать стрельбы в противном случае (даже если подозреваемый действительно является преступником). Преступник склонен стрелять (даже если шериф не стреляет), в то время как законопослушный гражданин хочет избежать конфликта любым образом (даже если шериф стреляет). Матрицы выигрышей зависит от типа подозреваемого:
Тип = «Законопослушный» | Действие шерифа | ||
---|---|---|---|
Стрелять | Не стрелять | ||
Действие подозреваемого | Стрелять | -3, -1 | -1, -2 |
Не стрелять | -2, -1 | 0, 0 |
Тип = «Преступник» | Действие шерифа | ||
---|---|---|---|
Стрелять | Не стрелять | ||
Действие подозреваемого | Стрелять | 0, 0 | 2, -2 |
Не стрелять | -2, -1 | -1,1 |
Если оба имеется общее знание о рациональности игроков (игрок 1 рационален; игрок 1 знает, что игрок 2 рационален; игрок 1 знает, что игрок 2, знает, что игрок 1 рационален и т.д. до бесконечности) игра пройдёт по следующему равновесному (совершенное байесовское равновесие) сценарию :
Когда подозреваемый имеет тип «законопослушный», доминирующая стратегия для него — не стрелять, когда же он имеет тип «преступник», доминирующая стратегия предписывает ему стрелять. Сильно доминируемые стратегии можно исключить из рассмотрения. Тогда если шериф стреляет, он получает 0 с вероятностью p и -1 с вероятностью 1-p. Его ожидаемый выигрыш составляет p-1. Если шериф не стреляет, ему полагается -2 с вероятностью p и 0 с вероятностью 1-p; ожидаемый выигрыш равен -2p. Шериф всегда будет стрелять при условии p-1 > -2p, то есть когда p > 1/3.
См. также
Примечания
- Harsanyi, John C., 1967/1968. "Games with Incomplete Information Played by Bayesian Players, I-III." Management Science 14 (3): 159-183 (Part I), 14 (5): 320-334 (Part II), 14 (7): 486-502 (Part III).
- (англ.) . Coursera . Дата обращения: 16 июня 2016. 10 августа 2016 года.
- Hu, Yuhuang; Loo, Chu Kiong. A Generalized Quantum-Inspired Decision Making Model for Intelligent Agent (англ.) // vol. 2014 ). — ISSN . — doi : . — . — PMC . : journal. — 2014. — 17 March (
Литература
- Gibbons, Robert. (неопр.) . — Princeton University Press , 1992. — С. 144—152.
- Levin, Jonathan (2002). Дата обращения: 25 августа 2016.
- 2020-03-21
- 1